Virtio PCI Card Specification
v0.9.43 DRAFT

Rusty Russell <rusty@rustcorp.com.au> IBM Corporation (Editor)

2012+DPeeember-6February 7.

Chapter 1

Purpose and Description

This document describes the specifications of the “virtio” family of PCI de-
vices. These are devices are found in wirtual environments, yet by design they
are not all that different from physical PCI devices, and this document treats
them as such. This allows the guest to use standard PCI drivers and discovery
mechanisms.

The purpose of virtio and this specification is that virtual environments and
guests should have a straightforward, efficient, standard and extensible mecha-
nism for virtual devices, rather than boutique per-environment or per-OS mech-
anisms.

Straightforward: Virtio PCI devices use normal PCI mechanisms of inter-
rupts and DMA which should be familiar to any device driver author.
There is no exotic page-flipping or COW mechanism: it’s just a PCI de-
vice.!

Efficient: Virtio PCI devices consist of rings of descriptors for input and out-
put, which are neatly separated to avoid cache effects from both guest and
device writing to the same cache lines.

Standard: Virtio PCI makes no assumptions about the environment in which
it operates, beyond supporting PCI. In fact the virtio devices specified in
the appendices do not require PCI at all: they have been implemented on
non-PCI buses.?

IThis lack of page-sharing implies that the implementation of the device (e.g. the hyper-
visor or host) needs full access to the guest memory. Communication with untrusted parties
(i.e. inter-guest communication) requires copying.

2The Linux implementation further separates the PCI virtio code from the specific virtio
drivers: these drivers are shared with the non-PCI implementations (currently lguest and
S/390).

Extensible: Virtio PCI devices contain feature bits which are acknowledged
by the guest operating system during device setup. This allows forwards
and backwards compatibility: the device offers all the features it knows
about, and the driver acknowledges those it understands and wishes to
use.

1.1 Virtqueues

The mechanism for bulk data transport on virtio PCI devices is pretentiously
called a virtqueue. Each device can have zero or more virtqueues: for example,
the network device has one for transmit and one for receive.

Each virtqueue occupies two or more physically-contiguous pages (defined, for
the purposes of this specification, as 4096 bytes), and consists of three parts:

| Descriptor Table | Available Ring (padding) | Used Ring |

When the driver wants to send a buffer to the device, it fills in a slot in the
descriptor table (or chains several together), and writes the descriptor index
into the available ring. It then notifies the device. When the device has finished
a buffer, it writes the descriptor into the used ring, and sends an interrupt.

Chapter 2

Specification

2.1 PCI Discovery

Any PCI device with Vendor ID 0x1AF4, and Device ID 0x1000 through 0x103F
inclusive is a virtio device'. The device must also have a Revision ID of 0 to
match this specification.

The Subsystem Device ID indicates which virtio device is supported by the
device. The Subsystem Vendor ID should reflect the PCI Vendor ID of the
environment (it’s currently only used for informational purposes by the guest).

’ Subsystem Device ID \ Virtio Device \ Specification ‘

1 network card Appendix C
2 block device Appendix D
3 console Appendix E
4 entropy source Appendix F
5 memory ballooning | Appendix G
6 ioMemory -

7 rpmsg -

8 SCSI host Appendix H

2.2 Device Configuration

To configure the device, we use the first I/O region of the PCI device. This
contains a wvirtio header followed by a device-specific region.

There may be different widths of accesses to the I/O region; the “natural” access
method for each field in the virtio header must be used (i.e. 32-bit accesses for

I'The actual value within this range is ignored

32-bit fields, etc), but the device-specific region can be accessed using any width
accesses, and should obtain the same results.

Note that this is possible because while the virtio header is PCI (i.e. little)
endian, the device-specific region is encoded in the native endian of the guest
(where such distinction is applicable).

2.2.1 Device Initialization Sequence

We start with an overview of device initialization, then expand on the details
of the device and how each step is preformed.

1. Reset the device. This is not required on initial start up.
2. The ACKNOWLEDGE status bit is set: we have noticed the device.

3. The DRIVER status bit is set: we know how to drive the device.

4. Device-specific setup, including reading the Device Feature Bits, discov-
ery of virtqueues for the device, optional MSI-X setup, and reading and
possibly writing the virtio configuration space.

5. The subset of Device Feature Bits understood by the driver is written to
the device.

6. The DRIVER OK status bit is set.

7. The device can now be used (ie. buffers added to the virtqueues)?

If any of these steps go irrecoverably wrong, the guest should set the FAILED

status bit to indicate that it has given up on the device (it can reset the device
later to restart if desired).

We now cover the fields required for general setup in detail.

2.2.2 Virtio Header

The virtio header looks as follows:

Bits 32 32 32 16 16 16 8 8

Read/Write || R R+W R+W | R R+W | R+W | R+W | R

Purpose Device Guest Queue Queue | Queue Queue Device | ISR
Features bits 0:31 | Features bits 0:31 | Address | Size Select Notify Status | Status

2Historically, drivers have used the device before steps 5 and 6. This is only allowed if the
driver does not use any features which would alter this early use of the device.

If MSI-X is enabled for the device, two additional fields immediately follow this
header:®

Bits 16 16

Read/Write || R+W R+W
Purpose Configuration | Queue
(MSI—X) Vector Vector

Immediately following these general headers, there may be device-specific head-
ers:

Bits Device Specific
Read/Write || Device Specific
Purpose Device Specific...

2.2.2.1 Device Status

The Device Status field is updated by the guest to indicate its progress. This
provides a simple low-level diagnostic: it’s most useful to imagine them hooked
up to traffic lights on the console indicating the status of each device.

The device can be reset by writing a 0 to this field, otherwise at least one bit
should be set:

ACKNOWLEDGE (1) Indicates that the guest OS has found the device and
recognized it as a valid virtio device.

DRIVER (2) Indicates that the guest OS knows how to drive the device.
Under Linux, drivers can be loadable modules so there may be a significant
(or infinite) delay before setting this bit.

DRIVER OK (4) Indicates that the driver is set up and ready to drive the
device.

FAILED (128) Indicates that something went wrong in the guest, and it has
given up on the device. This could be an internal error, or the driver
didn’t like the device for some reason, or even a fatal error during device
operation. The device must be reset before attempting to re-initialize.

2.2.2.2 Feature Bits

Thefirst configuration field indicates the features that the device supports. The
bits are allocated as follows:

0 to 23 Feature bits for the specific device type

3ie. once you enable MSI-X on the device, the other fields move. If you turn it off again,

they move back!

24 to 32 Feature bits reserved for extensions to the queue and feature negoti-
ation mechanisms

For example, feature bit 0 for a network device (i.e. Subsystem Device ID 1)
indicates that the device supports checksumming of packets.

The feature bits are negotiated: the device lists all the features it understands
in the Device Features field, and the guest writes the subset that it understands
into the Guest Features field. The only way to renegotiate is to reset the device.

In particular, new fields in the device configuration header are indicated by
offering a feature bit, so the guest can check before accessing that part of the
configuration space.

This allows for forwards and backwards compatibility: if the device is enhanced
with a new feature bit, older guests will not write that feature bit back to the
Guest Features field and it can go into backwards compatibility mode. Similarly,
if a guest is enhanced with a feature that the device doesn’t support, it will not
see that feature bit in the Device Features field and can go into backwards com-
patibility mode (or, for poor implementations, set the FAILED Device Status
bit).

2.2.2.3 Configuration/Queue Vectors

When MSI-X capability is present and enabled in the device (through standard
PCI configuration space) 4 bytes at byte offset 20 are used to map configuration
change and queue interrupts to MSI-X vectors. In this case, the ISR Status
field is unused, and device specific configuration starts at byte offset 24 in vir-
tio header structure. When MSI-X capability is not enabled, device specific
configuration starts at byte offset 20 in virtio header.

Writing a valid MSI-X Table entry number, 0 to 0x7FF, to one of Configu-
ration/Queue Vector registers, maps interrupts triggered by the configuration
change/selected queue events respectively to the corresponding MSI-X vector.

To disable interrupts for a specific event type, unmap it by writing a special
NO_VECTOR value:

/* Vector value used to disable MSI for queue x/
#define VIRTIO _MSI NO_VECTOR Oxffff

Reading these registers returns vector mapped to a given event, or NO _VECTOR
if unmapped. All queue and configuration change events are unmapped by de-
fault.

Note that mapping an event to vector might require allocating internal de-
vice resources, and might fail. Devices report such failures by returning the
NO_ VECTOR value when the relevant Vector field is read. After mapping
an event to vector, the driver must verify success by reading the Vector field

value: on success, the previously written value is returned, and on failure,
NO_VECTOR is returned. If a mapping failure is detected, the driver can
retry mapping with fewervectors, or disable MSI-X.

2.3 Virtqueue Configuration

As a device can have zero or more virtqueues for bulk data transport (for ex-
ample, the network driver has two), the driver needs to configure them as part
of the device-specific configuration.

This is done as follows, for each virtqueue a device has:

1. Write the virtqueue index (first queue is 0) to the Queue Select field.

2. Read the virtqueue size from the Queue Size field, which is always a power
of 2. This controls how big the virtqueue is (see below). If this field is 0,
the virtqueue does not exist.

3. Allocate and zero virtqueue in contiguous physical memory, on a 4096
byte alignment. Write the physical address, divided by 4096 to the Queue
Address field.*

4. Optionally, if MSI-X capability is present and enabled on the device, select
a vector to use to request interrupts triggered by virtqueue events. Write
the MSI-X Table entry number corresponding to this vector in Queue
Vector field. Read the Queue Vector field: on success, previously written
value is returned; on failure, NO _VECTOR value is returned.

The Queue Size field controls the total number of bytes required for the virtqueue
according to the following formula:

#define ALIGN(x) (((x) + 4095) & 74095)
static inline unsigned vring size(unsigned int qsz)
{
return ALIGN(sizeof (struct vring desc)xqsz + sizeof(ul6)x(2 + gsz))
+ ALIGN(sizeof (struct vring used elem)xqsz);

}

This currently wastes some space with padding, but also allows future exten-
sions. The virtqueue layout structure looks like this (qsz is the Queue Size field,
which is a variable, so this code won’t compile):

struct vring {
/* The actual descriptors (16 bytes each) x/

4The 4096 is based on the x86 page size, but it’s also large enough to ensure that the
separate parts of the virtqueue are on separate cache lines.

struct vring desc desc[qsz];

/* A ring of available descriptor heads with free—running index.

struct vring avail avail;

// Padding to the next 4096 boundary.
char pad[];

// A ring of used descriptor heads with free—running index.

struct vring used used;

}s

2.3.1 A Note on Virtqueue Endianness

Note that the endian of these fields and everything else in the virtqueue is the
native endian of the guest, not little-endian as PCI normally is. This makes for
simpler guest code, and it is assumed that the host already has to be deeply
aware of the guest endian so such an “endian-aware” device is not a significant
issue.

2.3.2 Descriptor Table

The descriptor table refers to the buffers the guest is using for the device. The
addresses are physical addresses, and the buffers can be chained via the next
field. Each descriptor describes a buffer which is read-only or write-only, but a
chain of descriptors can contain both read-only and write-only buffers.

No descriptor chain may be more than 2732 bytes long in total.

struct vring desc {
/* Address (guest—physical). =/
u64 addr;
/* Length. =/
u32 len;
/* This marks a buffer as continuing via the next field. x/

#define VRING _DESC_F NEXT 1

/* This marks a buffer as write—only (otherwise read—only). x/

#define VRING DESC_F WRITE 2

/#* This means the buffer contains a list of buffer descriptors. x/

#define VRING DESC F INDIRECT 4
/* The flags as indicated above. x/

ul6 flags;
/* Next field if flags & NEXT x/
ul6 next;

}s

*/

The number of descriptors in the table is specified by the Queue Size field for
this virtqueue.

2.3.3 Indirect Descriptors

Some devices benefit by concurrently dispatching a large number of large re-
quests. The VIRTIO RING F INDIRECT DESC feature can be used to
allow this (see 3). To increase ring capacity it is possible to store a table of in-
direct descriptors anywhere in memory, and insert a descriptor in main virtqueue
(with flags&INDIRECT on) that refers to memory buffer containing this indi-
rect descriptor table; fields addr and len refer to the indirect table address and
length in bytes, respectively. The indirect table layout structure looks like this
(len is the length of the descriptor that refers to this table, which is a variable,
so this code won’t compile):

struct indirect descriptor_ table {
/* The actual descriptors (16 bytes each) x/
struct vring_ desc desc[len / 16];

}s

The first indirect descriptor is located at start of the indirect descriptor table (in-
dex 0), additional indirect descriptors are chained by next field. An indirect de-
scriptor without next field (with flags&NEXT off) signals the end of the indirect
descriptor table, and transfers control back to the main virtqueue. An indirect
descriptor can not refer to another indirect descriptor table (flags&INDIRECT
must be off). A single indirect descriptor table can include both read-only and
write-only descriptors; write-only flag (flags&WRITE) in the descriptor that
refers to it is ignored.

2.3.4 Available Ring

The available ring refers to what descriptors we are offering the device: it refers
to the head of a descriptor chain. The “flags” field is currently 0 or 1: 1 indicating
that we do not need an interrupt when the device consumes a descriptor from
the available ring. Alternatively, the guest can ask the device to delay interrupts
until an entry with an index specified by the “used _event” field is written in the
used ring (equivalently, until the idz field in the used ring will reach the value
used__event + 1). The method employed by the device is controlled by the VIR~
TIO RING_F EVENT IDX feature bit (see 3). This interrupt suppression
is merely an optimization; it may not suppress interrupts entirely.

The “idx” field indicates where we would put the next descriptor entry (modulo
the ring size). This starts at 0, and increases.

struct vring_avail {
#define VRING_AVAIL F_NO_INTERRUPT 1

ul6 flags;

ul6 idx;

ul6 ring[gsz]; /* gsz is the Queue Size field read from device x*/
ul6 used event;

}s

2.3.5 Used Ring

The used ring is where the device returns buffers once it is done with them. The
flags field can be used by the device to hint that no notification is necessary when
the guest adds to the available ring. Alternatively, the “avail _event” field can be
used by the device to hint that no notification is necessary until an entry with an
index specified by the “avail _event” is written in the available ring (equivalently,
until the idz field in the available ring will reach the value avail event + 1).
The method employed by the device is controlled by the guest through the
VIRTIO RING_F_EVENT _IDX feature bit (see 3). °.

Each entry in the ring is a pair: the head entry of the descriptor chain describing
the buffer (this matches an entry placed in the available ring by the guest
earlier), and the total of bytes written into the buffer. The latter is extremely
useful for guests using untrusted buffers: if you do not know exactly how much
has been written by the device, you usually have to zero the buffer to ensure no
data leakage occurs.

/* u32 is used here for ids for padding reasons. x*/
struct vring used elem {
/* Index of start of used descriptor chain. x/
u32 id;
/* Total length of the descriptor chain which was used (written to) x/
u32 len;

}s

struct vring used {

#define VRING USED F NO NOTIFY 1
ul6 flags;
ul6 idx;
struct vring used elem ring[qsz];
ul6 avail event;

}s

5These fields are kept here because this is the only part of the virtqueue written by the
device

10

2.3.6 Helpers for Managing Virtqueues

The Linux Kernel Source code contains the definitions above and helper rou-
tines in a more usable form, in include/linux/virtio ring.h. This was explicitly
licensed by IBM and Red Hat under the (3-clause) BSD license so that it can
be freely used by all other projects, and is reproduced (with slight variation to
remove Linux assumptions) in Appendix A.

2.4 Device Operation

There are two parts to device operation: supplying new buffers to the device,
and processing used buffers from the device. As an example, the virtio network
device has two virtqueues: the transmit virtqueue and the receive virtqueue.
The driver adds outgoing (read-only) packets to the transmit virtqueue, and
then frees them after they are used. Similarly, incoming (write-only) buffers are
added to the receive virtqueue, and processed after they are used.

2.4.1 Supplying Buffers to The Device
Actual transfer of buffers from the guest OS to the device operates as follows:

1. Place the buffer(s) into free descriptor(s).

(a) If there are no free descriptors, the guest may choose to notify the
device even if notifications are suppressed (to reduce latency).5

2. Place the id of the buffer in the next ring entry of the available ring.
3. The steps (1) and (2) may be performed repeatedly if batching is possible.

4. A memory barrier should be executed to ensure the device sees the updated
descriptor table and available ring before the next step.

5. The available “idx” field should be increased by the number of entries
added to the available ring.

6. A memory barrier should be executed to ensure that we update the idx
field before checking for notification suppression.

7. If notifications are not suppressed, the device should be notified of the
new buffers.

6The Linux drivers do this only for read-only buffers: for write-only buffers, it is assumed
that the driver is merely trying to keep the receive buffer ring full, and no notification of this
expected condition is necessary.

11

Note that the above code does not take precautions against the available ring
buffer wrapping around: this is not possible since the ring buffer is the same
size as the descriptor table, so step (1) will prevent such a condition.

In addition, the maximum queue size is 32768 (it must be a power of 2 which
fits in 16 bits), so the 16-bit “idx” value can always distinguish between a full
and empty buffer.

Here is a description of each stage in more detail.

2.4.1.1 Placing Buffers Into The Descriptor Table

A buffer consists of zero or more read-only physically-contiguous elements fol-
lowed by zero or more physically-contiguous write-only elements (it must have
at least one element). This algorithm maps it into the descriptor table:

1. for each buffer element, b:

(a) Get the next free descriptor table entry, d

(b) Set d.addr to the physical address of the start of b

(c) Set d.len to the length of b.
)

(d) If b is write-only, set d.flags to VRING DESC_F_ WRITE, oth-
erwise 0.

(e) If there is a buffer element after this:

i. Set d.next to the index of the next free descriptor element.
ii. Set the VRING_DESC_F NEXT bit in d.flags.

In practice, the d.next fields are usually used to chain free descriptors, and a
separate count kept to check there are enough free descriptors before beginning
the mappings.

2.4.1.2 Updating The Available Ring

The head of the buffer we mapped is the first 4 in the algorithm above. A naive
implementation would do the following;:

avail —ring[avail—idx % qsz] = head;

However, in general we can add many descriptors before we update the “idx”

field (at which point they become visible to the device), so we keep a counter
of how many we’ve added:

avail —ring[(avail —idx + added++) % qsz] = head;

12

2.4.1.3 Updating The Index Field

Once the idx field of the virtqueue is updated, the device will be able to access
the descriptor entries we’ve created and the memory they refer to. This is why
a memory barrier is generally used before the idx update, to ensure it sees the
most up-to-date copy.

The idx field always increments, and we let it wrap naturally at 65536:

avail —idx += added;

2.4.1.4 Notifying The Device

Device notification occurs by writing the 16-bit virtqueue index of this virtqueue
to the Queue Notify field of the virtio header in the first I/O region of the
PCI device. This can be expensive, however, so the device can suppress such
notifications if it doesn’t need them. We have to be careful to expose the new
idx value before checking the suppression flag: it’s OK to notify gratuitously,
but not to omit a required notification. So again, we use a memory barrier here
before reading the flags or the avail event field.

If the VIRTIO F RING_ EVENT IDX feature is not negotiated, and if the
VRING USED F NOTIFY flag is not set, we go ahead and write to the PCI
configuration space.

If the VIRTIO F RING EVENT IDX feature is negotiated, we read the
avail _event field in the available ring structure. If the available index crossed _the
avail_event field value since the last notification, we go ahead and write to the
PCI configuration space. The avail event field wraps naturally at 65536 as
well:

(ul6)(new_ idx — avail event — 1) < (ul6)(new_idx — old_ idx)

2.4.2 Receiving Used Buffers From The Device

Once the device has used a buffer (read from or written to it, or parts of both,
depending on the nature of the virtqueue and the device), it sends an interrupt,
following an algorithm very similar to the algorithm used for the driver to send
the device a buffer:

1. Write the head descriptor number to the next field in the used ring.
2. Update the used ring idx.

3. Determine whether an interrupt is necessary:

13

(a) If the VIRTIO F RING_EVENT IDX feature is not negotiated:
check if f the VRING _AVAIL F NO _ INTERRUPT flag is not set
in avail->flags

(b) Ifthe VIRTIO F RING EVENT IDX feature is negotiated: check
whether the used index crossed the used_event field value since the
last update. The used_ event field wraps naturally at 65536 as well:

(ul6)(new_idx — used_event — 1) < (ul6)(new_idx — old_idx)

4. If an interrupt is necessary:

(a) If MSI-X capability is disabled:
i. Set the lower bit of the ISR Status field for the device.
ii. Send the appropriate PCI interrupt for the device.

(b) If MSI-X capability is enabled:

i. Request the appropriate MSI-X interrupt message for the device,
Queue Vector field sets the MSI-X Table entry number.

ii. If Queue Vector field value is NO_ VECTOR, no interrupt mes-
sage is requested for this event.

The guest interrupt handler should:

1. If MSI-X capability is disabled: read the ISR Status field, which will reset
it to zero. If the lower bit is zero, the interrupt was not for this device.
Otherwise, the guest driver should look through the used rings of each
virtqueue for the device, to see if any progress has been made by the
device which requires servicing.

2. If MSI-X capability is enabled: look through the used rings of each virtqueue
mapped to the specific MSI-X vector for the device, to see if any progress
has been made by the device which requires servicing.

For each ring, guest should then disable interrupts by writing VRING AVAIL F NO_ INTERRUPT
flag in avail structure, if required. It can then process used ring entries finally en-

abling interrupts by clearing the VRING AVAIL F NO_ INTERRUPT flag

or updating the EVENT IDX field in the available structure, Guest should then

execute a memory barrier, and then recheck the ring empty condition. This is

necessary to handle the case where, after the last check and before enabling

interrupts, an interrupt has been suppressed by the device:

vring disable interrupts(vq);

for (5;) {
if (vq—>last seen used != vring—>used.idx) {
vring enable interrupts(vq);
mb () ;

14

if (vq—>last seen used != vring—used.idx)
break ;
}
struct vring used elem xe — vring.used—>ring|[vq—>last seen used%vsz |;
process_buffer(e);
vq—>last seen used++;

2.4.3 Dealing With Configuration Changes

Some virtio PCI devices can change the device configuration state, as reflected
in the virtio header in the PCI configuration space. In this case:

1. If MSI-X capability is disabled: an interrupt is delivered and the sec-
ond highest bit is set in the ISR Status field to indicate that the driver
should re-examine the configuration space.Note that a single interrupt can
indicate both that one or more virtqueue has been used and that the con-
figuration space has changed: even if the config bit is set, virtqueues must
be scanned.

2. If MSI-X capability is enabled: an interrupt message is requested. The
Configuration Vector field sets the MSI-X Table entry number to use. If
Configuration Vector field value is NO_VECTOR, no interrupt message
is requested for this event.

15

Chapter 3

Creating New Device Types

Various considerations are necessary when creating a new device type:

How Many Virtqueues?

It is possible that a very simple device will operate entirely through its config-
uration space, but most will need at least one virtqueue in which it will place
requests. A device with both input and output (eg. console and network de-
vices described here) need two queues: one which the driver fills with buffers to
receive input, and one which the driver places buffers to transmit output.

What Configuration Space Layout?

Configuration space is generally used for rarely-changing or initialization-time
parameters. But it is a limited resource, so it might be better to use a virtqueue
to update configuration information (the network device does this for filtering,
otherwise the table in the config space could potentially be very large).

Note that this space is generally the guest’s native endian, rather than PCI’s
little-endian.

What Device Number?

Currently device numbers are assigned quite freely: a simple request mail to
the author of this document or the Linux virtualization mailing list! will be
sufficient to secure a unique one.

Lhttps://lists.linux-foundation.org/mailman /listinfo/virtualization

16

Meanwhile for experimental drivers, use 65535 and work backwards.

How many MSI-X vectors?

Using the optional MSI-X capability devices can speed up interrupt processing
by removing the need to read ISR Status register by guest driver (which might be
an expensive operation), reducing interrupt sharing between devices and queues
within the device, and handling interrupts from multiple CPUs. However, some
systems impose a limit (which might be as low as 256) on the total number of
MSI-X vectors that can be allocated to all devices. Devices and/or device drivers
should take this into account, limiting the number of vectors used unless the
device is expected to cause a high volume of interrupts. Devices can control the
number of vectors used by limiting the MSI-X Table Size or not presenting MSI-
X capability in PCI configuration space. Drivers can control this by mapping
events to as small number of vectors as possible, or disabling MSI-X capability
altogether.

Message Framing

The descriptors used for a buffer should not effect the semantics of the message,
except for the total length of the buffer. For example, a network buffer consists
of a 10 byte header followed by the network packet. Whether this is presented
in the ring descriptor chain as (say) a 10 byte buffer and a 1514 byte buffer, or
a single 1524 byte buffer, or even three buffers, should have no effect.

In particular, no implementation should use the descriptor boundaries to deter-
mine the size of any header in a request.?

Device Improvements

Any change to configuration space, or new virtqueues, or behavioural changes,
should be indicated by negotiation of a new feature bit. This establishes clarity®
and avoids future expansion problems.

Clusters of functionality which are always implemented together can use a sin-
gle bit, but if one feature makes sense without the others they should not be
gratuitously grouped together to conserve feature bits. We can always extend
the spec when the first person needs more than 24 feature bits for their device.

2The current gemu device implementations mistakenly insist that the first descriptor cover
the header in these cases exactly, so a cautious driver should arrange it so.
3Even if it does mean documenting design or implementation mistakes!

17

Nomenclature

PCI Peripheral Component Interconnect; a common device bus. See
http://en.wikipedia.org/wiki/Peripheral Component Interconnect

virtualized Environments where access to hardware is restricted (and often em-
ulated) by a hypervisor.

18

Appendix A: virtio ring.h

#ifndef VIRTIO RING H
#define VIRTIO RING_H
/* An interface for efficient virtio implementation.

This header is BSD licensed so anyone can use the definitions
to implement compatible drivers/servers.

Copyright 2007, 2009, IBM Corporation
Copyright 2011, Red Hat, Inc
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification , are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice , this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice , this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of IBM nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ¢‘AS IS’

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL IBM OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

K OXK K K X KK K KX K K K KX K KK KKK KX K X K X X X X

*
~

19

/+* This marks a buffer as continuing via the next field. %/

#define VRING DESC F NEXT 1
/* This marks a buffer as write—only (otherwise read—only). x/
#define VRING_DESC_F WRITE 2

/+* The Host uses this in used—>flags to advise the Guest: don’t kick me

* when you add a buffer. It’s unreliable, so it’s simply an

* optimization. Guest will still kick if it’s out of buffers. =/
#define VRING_USED_F _NO_NOTIFY 1

/* The Guest uses this in avail—flags to advise the Host: don’t

* interrupt me when you consume a buffer. It’s unreliable, so it’s
* simply an optimization. x/
#define VRING _AVAIL F NO_ INTERRUPT 1

/* Virtio ring descriptors: 16 bytes.
* These can chain together via "next". x/
struct vring desc {
/* Address (guest—physical). %/
uint64 t addr;
/* Length. x/
uint32 t len;
/* The flags as indicated above. x/
uintl6 _t flags;
/* We chain unused descriptors via this, too */
uintl6_t next;

}s

struct vring_ avail {
uintl6 _t flags;
uintl6 t idx;
uintl6_t ring[];
uintl6 t used event;

/* u32 is used here for ids for padding reasons. x*/
struct vring used elem {
/* Index of start of used descriptor chain. x/
uint32 _t id;

/+* Total length of the descriptor chain which was written to.

uint32 t len;
};
struct vring used {

uintl6 _t flags;
uintl6é t idx;

20

struct vring used elem ring|[];
uintl6 t avail event;

}s

struct vring {
unsigned int num;

struct vring desc xdesc;
struct vring avail xavail;
struct vring used =xused;

—

/#* The standard layout for the ring is a continuous chunk of memory which
* looks like this. We assume num is a power of 2.

*k

* struct vring {

* // The actual descriptors (16 bytes each)

* struct vring desc desc[num];

*

* // A ring of available descriptor heads with free—running index.
* __ul6 avail flags;

* __ul6 avail idx;

* __ul6 available [num];

*

* // Padding to the next align boundary.

* char pad[];

*

* // A ring of used descriptor heads with free—running index.
* __ul6 used flags;

* _ulé EVENT IDX;

* struct vring used elem wused|[num];

* 15

* Note: for virtio PCI, align is 4096.

*/

static inline void vring init(struct vring =vr, unsigned int num, void x*p,
unsigned long align)

{

VI—>Num = num;
vr—>desc = p;
vr—>avail = p + numxsizeof (struct vring desc);
vr—>used = (void *)(((unsigned long)&vr—avail—>ring [num]
+ align —1)
& “(align — 1));
}

static inline unsigned vring size(unsigned int num, unsigned long align)

21

return ((sizeof(struct vring desc)*num + sizeof (uintl6 t)x(2+4num)
+ align — 1) & “(align — 1))
+ sizeof (uintl6 t)*3 + sizeof(struct vring used elem)*num;

}

static inline int vring need event(uintl6 t event idx, uintl6_t new_idx, uintl6 _
{

return (uintl6 _t)(new idx — event idx — 1) < (uintl6 t)(new_ idx — old i

}
#endif /+ VIRTIO RING H x/

22

Appendix B: Reserved
Feature Bits

Currently there are five device-independent feature bits defined:

VIRTIO _F NOTIFY ON_EMPTY (24) Negotiating this feature indi-
cates that the driver wants an interrupt if the device runs out of available
descriptors on a virtqueue, even though interrupts are suppressed using
the VRING AVAIL F NO_INTERRUPT flag or the used _event field.
An example of this is the networking driver: it doesn’t need to know ev-
ery time a packet is transmitted, but it does need to free the transmitted
packets a finite time after they are transmitted. It can avoid using a timer
if the device interrupts it when all the packets are transmitted.

VIRTIO F RING INDIRECT DESC (28) Negotiating this feature in-
dicates that the driver can use descriptors with the VRING DESC F INDIRECT
flag set, as described in 2.3.3.

VIRTIO F RING EVENT IDX(29) This feature enables the used_ event
and the avail_event fields. If set, it indicates that the device should ignore
the flags field in the available ring structure. Instead, the used_ event field
in this structure is used by guest to suppress device interrupts. Further,
the driver should ignore the flags field in the used ring structure. Instead,
the avail_event field in this structure is used by the device to suppress
notifications. If unset, the driver should ignore the used_ event field; the
device should ignore the awvail_event field; the flags field is used

23

Appendix C: Network Device

The virtio network device is a virtual ethernet card, and is the most complex
of the devices supported so far by virtio. It has enhanced rapidly and demon-
strates clearly how support for new features should be added to an existing
device. Empty buffers are placed in one virtqueue for receiving packets, and
outgoing packets are enqueued into another for transmission in that order. A
third command queue is used to control advanced filtering features.

Configuration

Subsystem Device ID 1
Virtqueues 0:receiveq. 1:transmitq. 2:controlq®

Feature bits

VIRTIO NET F CSUM (0) Device handles packets with partial
checksum

VIRTIO NET F GUEST_ CSUM (1) Guest handles packets with
partial checksum

VIRTIO NET_ F_ MAC (5) Device has given MAC address.

VIRTIO NET _ F_GSO (6) (Deprecated) device handles packets with
any GSO type.?

VIRTIO NET F_ GUEST_ TSO4 (7) Guest can receive TSOv4.
VIRTIO NET F GUEST TSO6 (8) Guest can receive TSOV6.

VIRTIO NET F GUEST_ ECN (9) Guest can receive TSO with
ECN.

VIRTIO NET F GUEST_ UFO (10) Guest can receive UFO.
VIRTIO NET F_ HOST_ TSO04 (11) Device can receive TSOv4.

4Only if VIRTIO NET F CTRL VQ set
5Tt was supposed to indicate segmentation offload support, but upon further investigation
it became clear that multiple bits were required.

24

VIRTIO NET F _ HOST_ TSO06 (12) Device can receive TSOv6.

VIRTIO NET_ F _ HOST_ ECN (13) Device can receive TSO with
ECN.

VIRTIO NET F HOST UFO (14) Device can receive UFO.

VIRTIO NET_ F_ MRG _RXBUF (15) Guest can merge receive
buffers.

VIRTIO NET_ F_ STATUS (16) Configuration status field is avail-
able.

VIRTIO NET F CTRL_VQ (17) Control channel is available.

VIRTIO NET F CTRL_RX (18) Control channel RX mode sup-
port.

VIRTIO NET_ F CTRL_VLAN (19) Control channel VLAN fil-
tering.

VIRTIO NET F GUEST_ ANNOUNCE(21) Guest can send gra-
tuitous packets.

Device configuration layout Two configuration fields are currently defined.
The mac address field always exists (though is only valid if VIRTIO NET F MAC
is set), and the status field only exists if VIRTIO NET F STATUS is
set. Two bits are currently defined for the status field: VIRTIO NET S LINK UP
and VIRTIO NET S ANNOUNCE.

#define VIRTIO NET S LINK UP 1
#define VIRTIO NET S ANNOUNCE 2

struct virtio_net_config {
u8 mac|[6];
ul6 status;

}s

Device Initialization

1. The initialization routine should identify the receive and transmission
virtqueues.

2. If the VIRTIO NET F MAC feature bit is set, the configuration space
“mac” entry indicates the “physical” address of the the network card, oth-
erwise a private MAC address should be assigned. All guests are expected
to negotiate this feature if it is set.

3. If the VIRTIO NET F CTRL_ VQ feature bit is negotiated, identify
the control virtqueue.

25

4. If the VIRTIO NET F STATUS feature bit is negotiated, the link sta-
tus can be read from the bottom bit of the “status” config field. Otherwise,
the link should be assumed active.

5. The receive virtqueue should be filled with receive buffers. This is de-
scribed in detail below in “Setting Up Receive Buffers”.

6. A driver can indicate that it will generate checksumless packets by nego-
tating the VIRTIO NET F CSUM feature. This “checksum offload” is
a common feature on modern network cards.

7. If that feature is negotiated®, a driver can use TCP or UDP segmentation
offload by negotiating the VIRTIO NET_F_ HOST_TS04 (IPv4 TCP),
VIRTIO_NET _F_HOST_TSO6 (IPv6 TCP) and VIRTIO_NET F_HOST_UFO
(UDP fragmentation) features. It should not send TCP packets requiring
segmentation offload which have the Explicit Congestion Notification bit
set, unless the VIRTIO _NET _F_HOST _ECN feature is negotiated.”

8. The converse features are also available: a driver can save the virtual de-
vice some work by negotiating these features.® The VIRTIO NET F_GUEST _CSUM
feature indicates that partially checksummed packets can be received,
and if it can do that then the VIRTIO NET F GUEST TSO4, VIR-
TIO NET F GUEST TSO6, VIRTIO NET F GUEST UFO and
VIRTIO NET F GUEST ECN are the input equivalents of the fea-
tures described above. See “Receiving Packets” below.

Device Operation

Packets are transmitted by placing them in the transmitq, and buffers for in-
coming packets are placed in the receiveq. In each case, the packet itself is
preceeded by a header:

struct virtio_ net hdr {
#define VIRTIO NET HDR_F NEEDS CSUM 1

u8 flags;
#define VIRTIO NET HDR GSO_NONE 0
#define VIRTIO NET HDR GSO_TCPV4 1
#define VIRTIO NET HDR GSO_ UDP 3
#define VIRTIO NET HDR GSO TCPV6 4

6ie. VIRTIO _NET_F_HOST_TSO* and VIRTIO NET_F_HOST_UFO are depen-
dent on VIRTIO NET F CSUM; a dvice which offers the offload features must offer the
checksum feature, and a driver which accepts the offload features must accept the checksum
feature. Similar logic applies to the VIRTIO NET F GUEST TSO4 features depending
on VIRTIO NET F GUEST CSUM.

"This is a common restriction in real, older network cards.

8For example, a network packet transported between two guests on the same system may
not require checksumming at all, nor segmentation, if both guests are amenable.

26

#define VIRTIO NET HDR_ GSO ECN 0x80
u8 gso_type;
ul6 hdr len;
ul6é gso_size;
ul6 csum _start;
ul6 csum offset;

/#* Only if VIRTIO NET F MRG RXBUF: x/
ul6 num buffers

};

The controlq is used to control device features such as filtering.

Packet Transmission

Transmitting a single packet is simple, but varies depending on the different
features the driver negotiated.

1. If the driver negotiated VIRTIO NET F CSUM, and the packet has
not been fully checksummed, then the virtio _net hdr’s fields are set as
follows. Otherwise, the packet must be fully checksummed, and flags is
7ero.

e flags has the VIRTIO _NET HDR_F_NEEDS_CSUM set,

e csum _start is set to the offset within the packet to begin checksum-
ming, and

e csum_ offset indicates how many bytes after the csum _start the new
(16 bit ones’ complement) checksum should be placed.?

2. If the driver negotiated VIRTIO NET F HOST TSO04, TSO6 or UFO,
and the packet requires TCP segmentation or UDP fragmentation, then
the “gso_type” field is set to VIRTIO NET HDR GSO_TCPV4, TCPV6
or UDP. (Otherwise, it is set to VIRTIO NET HDR_GSO_NONE). In
this case, packets larger than 1514 bytes can be transmitted: the metadata
indicates how to replicate the packet header to cut it into smaller packets.
The other gso fields are set:

e hdr len is a hint to the device as to how much of the header needs
to be kept to copy into each packet, usually set to the length of the
headers, including the transport header.'”

9For example, consider a partially checksummed TCP (IPv4) packet. It will have a 14 byte
ethernet header and 20 byte IP header followed by the TCP header (with the TCP checksum
field 16 bytes into that header). csum_start will be 14420 = 34 (the TCP checksum includes
the header), and csum_offset will be 16. The value in the TCP checksum field should be
initialized to the sum of the TCP pseudo header, so that replacing it by the ones’ complement
checksum of the TCP header and body will give the correct result.
10Due to various bugs in implementations, this field is not useful as a guarantee of the
transport header size.

27

e gso_size is the maximum size of each packet beyond that header (ie.
MSS).
o If the driver negotiated the VIRTIO NET F HOST ECN feature,

the VIRTIO NET HDR GSO_ECN bit may be set in “gso_type”
as well, indicating that the TCP packet has the ECN bit set.!!

3. If the driver negotiated the VIRTIO NET F MRG RXBUF feature,
the num_buffers field is set to zero.

4. The header and packet are added as one output buffer to the transmitq,
and the device is notified of the new entry (see 2.4.1.4).12

Packet Transmission Interrupt

Often a driver will suppress transmission interrupts using the VRING _AVAIL F NO_ INTERRUPT
flag (see 2.4.2) and check for used packets in the transmit path of following pack-

ets. However, it will still receive interrupts if the VIRTIO F NOTIFY ON EMPTY

feature is negotiated, indicating that the transmission queue is completely emp-

tied.

The normal behavior in this interrupt handler is to retrieve and new descriptors
from the used ring and free the corresponding headers and packets.

Setting Up Receive Buffers

It is generally a good idea to keep the receive virtqueue as fully populated as
possible: if it runs out, network performance will suffer.

If the VIRTIO NET F GUEST TSO4, VIRTIO NET F GUEST TSO6
or VIRTIO NET F GUEST UFO features are used, the Guest will need to
accept packets of up to 65550 bytes long (the maximum size of a TCP or UDP
packet, plus the 14 byte ethernet header), otherwise 1514 bytes. So unless
VIRTIO NET F MRG _ RXBUF is negotiated, every buffer in the receive
queue needs to be at least this length 3.

If VIRTIO NET F MRG RXBUF is negotiated, each buffer must be at least
the size of the struct virtio_net_hdr.

HThis case is not handled by some older hardware, so is called out specifically in the
protocol.

I2Note that the header will be two bytes longer for the VIRTIO NET F_MRG_RXBUF
case.

130bviously each one can be split across multiple descriptor elements.

28

Packet Receive Interrupt

When a packet is copied into a buffer in the receiveq, the optimal path is to
disable further interrupts for the receiveq (see 2.4.2) and process packets until
no more are found, then re-enable them.

Processing packet involves:

1. If the driver negotiated the VIRTIO NET F MRG_RXBUF feature,
then the “num_buffers” field indicates how many descriptors this packet
is spread over (including this one). This allows receipt of large packets
without having to allocate large buffers. In this case, there will be at
least “num__buffers” in the used ring, and they should be chained together
to form a single packet. The other buffers will not begin with a struct
virtio_net_hdr.

2. If the VIRTIO NET F MRG _ RXBUF feature was not negotiated, or
the “num_buffers” field is one, then the entire packet will be contained
within this buffer, immediately following the struct virtio_net_hdr.

3. If the VIRTIO NET F GUEST CSUM feature was negotiated, the
VIRTIO NET HDR_F NEEDS CSUM bit in the “flags” field may be
set: if so, the checksum on the packet is incomplete and the “csum__start”
and “csum_ offset” fields indicate how to calculate it (see 1).

4. If the VIRTIO NET F GUEST TSO04, TSO6 or UFO options were ne-
gotiated, then the “gso type” may be something other than VIRTIO NET HDR _ GSO_NONE,
and the “gso_size” field indicates the desired MSS (see 2).

Control Virtqueue

The driver uses the control virtqueue (if VIRTIO NET F VTRL_VQ is ne-
gotiated) to send commands to manipulate various features of the device which
would not easily map into the configuration space.

All commands are of the following form:

struct virtio net ctrl {
u8 class;
u8 command;
u8 command—specific —data[];

u8 ack;
};
/* ack values x/
#define VIRTIO NET OK 0

#define VIRTIO NET ERR 1

29

The class, command and command-specific-data are set by the driver, and the
device sets the ack byte. There is little it can do except issue a diagnostic if the
ack byte is not VIRTIO NET OK.

Packet Receive Filtering

If the VIRTIO NET F CTRL RX feature is negotiated, the driver can send
control commands for promiscuous mode, multicast receiving, and filtering of
MAC addresses.

Note that in general, these commands are best-effort: unwanted packets may
still arrive.

Setting Promiscuous Mode

#define VIRTIO NET CTRL RX 0
#define VIRTIO NET CTRL_RX_PROMISC 0
#define VIRTIO NET CTRL_RX_ALIMULTI 1

The class VIRTIO NET CTRL_ RX hastwo commands: VIRTIO NET CTRL RX PROMISC
turns promiscuous mode on and off, and VIRTIO NET CTRL RX ALLMULTI

turns all-multicast receive on and off. The command-specific-data is one byte

containing 0 (off) or 1 (on).

Setting MAC Address Filtering
struct virtio_net ctrl _mac {

u32 entries;
u8 macs|[entries |[ETH_ALEN];

IE
#define VIRTIO NET CTRL MAC 1
#define VIRTIO NET CTRL MAC TABLE SET 0

The device can filter incoming packets by any number of destination MAC ad-
dresses.!* This table is set using the class VIRTIO _NET _CTRL_MAC and
the command VIRTIO NET CTRL MAC TABLE SET. The command-
specific-data is two variable length tables of 6-byte MAC addresses. The first
table contains unicast addresses, and the second contains multicast addresses.

VLAN Filtering

If the driver negotiates the VIRTION NET F CTRL_VLAN feature, it can
control a VLAN filter table in the device.

14Gince there are no guarentees, it can use a hash filter orsilently switch to allmulti or
promiscuous mode if it is given too many addresses.

30

#define VIRTIO NET CTRL VLAN 2
#define VIRTIO NET CTRL_VLAN ADD 0
#define VIRTIO NET CTRL_VLAN DEL 1

Both the VIRTIO NET CTRL_VLAN_ ADD and VIRTIO NET CTRL_VLAN_ DEL
command take a 16-bit VLAN id as the command-specific-data.

Gratuitous Packet Sending

If the driver negotiates the VIRTIO NET F GUEST ANNOUNCE, it can
ask the guest to send gratuitous packets; this is usually done after the guest
has been physically migrated, and needs to announce its presence on the new
network links. (As hypervisor does not have the knowledge of guest network
configuration (eg. tagged vlan) it is simplest to prod the guest in this way).

The Guest needs to check VIRTIO NET S ANNOUNCE bit in status field
when it notices the changes of device configuration.

Processing this notification involves:

1. Clearing VIRTIO NET S ANNOUNCE bit in the status field.

2. Sending the gratuitous packets.

31

Appendix D: Block Device

The virtio block device is a simple virtual block device (ie. disk). Read and
write requests (and other exotic requests) are placed in the queue, and serviced
(probably out of order) by the device except where noted.

Configuration

Subsystem Device ID 2
Virtqueues 0:requestq.
Feature bits

VIRTIO BLK_ F BARRIER (0) Host supports request barriers.

VIRTIO BLK F SIZE MAX (1) Maximum size of any single seg-
ment is in “size_max”.

VIRTIO BLK F SEG MAX (2) Maximum number of segments
in a request is in “seg _max”.

VIRTIO BLK F GEOMETRY (4) Disk-style geometry specified
in “geometry”.

VIRTIO BLK_ F RO (5) Device is read-only.

VIRTIO BLK F BLK SIZE (6) Block size of disk is in “blk _size”.

VIRTIO BLK F SCSI (7) Device supports scsi packet commands.

VIRTIO BLK_ F FLUSH (9) Cache flush command support.

Device configuration layout The capacity of the device (expressed in 512-
byte sectors) is always present. The availability of the others all depend
on various feature bits as indicated above.

struct virtio_ blk config {
u64 capacity;
u3d2 size max;
u32 seg max;

32

struct virtio blk geometry {
ul6é cylinders;
u8 heads;
u8 sectors;

} geometry;

u32 blk size;

Device Initialization

1. The device size should be read from the “capacity” configuration field. No
requests should be submitted which goes beyond this limit.

2. If the VIRTIO BLK F BLK SIZE feature is negotiated, the blk size
field can be read to determine the optimal sector size for the driver to use.
This does not effect the units used in the protocol (always 512 bytes), but
awareness of the correct value can effect performance.

3. If the VIRTIO BLK F RO feature is set by the device, any write re-
quests will fail.

Device Operation

The driver queues requests to the virtqueue, and they are used by the device
(not necessarily in order). Each request is of form:

struct virtio_ blk req {

u32 type;

u32 ioprio;

u64 sector;

char data[][512];
u8 status;

}s

If the device has VIRTIO BLK F_SCSI feature, it can also support scsi packet
command requests, each of these requests is of form:

struct virtio scsi_pc_req {
u32 type;
u32 ioprio;
u64 sector;
char cmd|];

33

char data[][512];

#define SCSI_SENSE BUFFERSIZE 96
u8 sense [SCSI_SENSE BUFFERSIZE]|;
u32 errors;
u32 data_ len;
u32 sense len;
u32 residual;

u8 status;

}s

The type of the request is either a read (VIRTIO BLK T IN), a write (VIR-

TIO _BLK_T_OUT), ascsi packet command (VIRTIO BLK T SCSI_CMD

or VIRTIO BLK_T_SCSI_CMD_OUT!) oraflush (VIRTIO BLK T _ FLUSH

or VIRTIO BLK T _ FLUSH_ OUT!®). If the device has VIRTIO BLK F_BARRIER
feature the high bit (VIRTIO BLK T BARRIER) indicates that this request

acts as a barrier and that all preceeding requests must be complete before this

one, and all following requests must not be started until this is complete. Note

that a barrier does not flush caches in the underlying backend device in host,

and thus does not serve as data consistency guarantee. Driver must use FLUSH

request to flush the host cache.

#define VIRTIO BLK T IN 0
#define VIRTIO BLK T OUT 1
#define VIRTIO BLK_T_SCSI_CMD 2
#define VIRTIO BLK_T SCSI_CMD_OUT 3

#define VIRTIO BLK_ T FLUSH 4
#define VIRTIO BLK T FLUSH OUT 5
#define VIRTIO BLK T BARRIER 0x80000000

The ioprio field is a hint about the relative priorities of requests to the device:
higher numbers indicate more important requests.

The sector number indicates the offset (multiplied by 512) where the read or
write is to occur. This field is unused and set to 0 for scsi packet commands
and for flush commands.

The c¢md field is only present for scsi packet command requests, and indicates
the command to perform. This field must reside in a single, separate read-only
buffer; command length can be derived from the length of this buffer.

Note that these first three (four for scsi packet commands) fields are always
read-only: the data field is either read-only or write-only, depending on the
request. The size of the read or write can be derived from the total size of the
request buffers.

15the SCSI_CMD and SCSI_CMD _OUT types are equivalent, the device does not distin-
guish between them

16the FLUSH and FLUSH_OUT types are equivalent, the device does not distinguish be-
tween them

34

The sense field is only present for scsi packet command requests, and indicates
the buffer for scsi sense data.

The data_len field is only present for scsi packet command requests, this field
is deprecated, and should be ignored by the driver. Historically, devices copied
data length there.

The sense_len field is only present for scsi packet command requests and indi-
cates the number of bytes actually written to the sense buffer.

The residual field is only present for scsi packet command requests and indicates
the residual size, calculated as data length - number of bytes actually transferred.

The final status byte is written by the device: either VIRTIO BLK S OK for
success, VIRTIO BLK S IOERR for host or guest error or VIRTIO BLK S UNSUPP
for a request unsupported by host:

#define VIRTIO BLK S OK 0
#define VIRTIO BLK_S IOERR 1
#define VIRTIO BLK_S_UNSUPP 2

Historically, devices assumed that the fields type, ioprio and sector reside in
a single, separate read-only buffer; the fields errors, data_len, sense_len and
residual reside in a single, separate write-only buffer; the sense field in a separate
write-only buffer of size 96 bytes, by itself; the fields errors, data_len, sense_len
and residual in a single write-only buffer; and the status field is a separate read-
only buffer of size 1 byte, by itself.

35

Appendix E: Console Device

The virtio console device is a simple device for data input and output. A
device may have one or more ports. Each port has a pair of input and output
virtqueues. Moreover, a device has a pair of control IO virtqueues. The control
virtqueues are used to communicate information between the device and the
driver about ports being opened and closed on either side of the connection,
indication from the host about whether a particular port is a console port,
adding new ports, port hot-plug/unplug, etc., and indication from the guest
about whether a port or a device was successfully added, port open/close, etc..
For data IO, one or more empty buffers are placed in the receive queue for
incoming data and outgoing characters are placed in the transmit queue.

Configuration

Subsystem Device ID 3

Virtqueues O:receiveq(port0). 1:transmitq(port0), 2:control receiveq'?, 3:con-
trol transmitq, 4:receiveq(portl), 5:transmitq(portl), ...

Feature bits

VIRTIO CONSOLE_ F SIZE (0) Configuration cols and rows fields
are valid.

VIRTIO CONSOLE_F MULTIPORT(1) Device has support for
multiple ports; configuration fields nr _ports and max_nr_ports are
valid and control virtqueues will be used.

Device configuration layout The size of the console is supplied in the con-
figuration space if the VIRTIO CONSOLE_F _SIZE feature is set. Fur-
thermore, if the VIRTIO CONSOLE_ F MULTIPORT feature is set,
the maximum number of ports supported by the device can be fetched.

"Ports 2 onwards only if VIRTIO CONSOLE F_ MULTIPORT is set

36

struct virtio console config {
ul6é cols;
ul6é rows;

u32 max_nr_ports;

}s

Device Initialization

1. If the VIRTIO CONSOLE F SIZE feature is negotiated, the driver can
read the console dimensions from the configuration fields.

2. If the VIRTIO CONSOLE F MULTIPORT feature is negotiated, the
driver can spawn multiple ports, not all of which may be attached to a con-
sole. Some could be generic ports. In this case, the control virtqueues are
enabled and according to the max nr ports configuration-space value,
the appropriate number of virtqueues are created. A control message in-
dicating the driver is ready is sent to the host. The host can then send
control messages for adding new ports to the device. After creating and
initializing each port, a VIRTIO CONSOLE PORT READY control
message is sent to the host for that port so the host can let us know of
any additional configuration options set for that port.

3. The receiveq for each port is populated with one or more receive buffers.

Device Operation

1. For output, a buffer containing the characters is placed in the port’s trans-
mitq.'®

2. When a buffer is used in the receiveq (signalled by an interrupt), the
contents is the input to the port associated with the virtqueue for which
the notification was received.

3. If the driver negotiated the VIRTIO CONSOLE F SIZE feature, a con-
figuration change interrupt may occur. The updated size can be read from
the configuration fields.

18Because this is high importance and low bandwidth, the current Linux implementation
polls for the buffer to be used, rather than waiting for an interrupt, simplifying the implemen-
tation significantly. However, for generic serial ports with the O NONBLOCK flag set, the
polling limitation is relaxed and the consumed buffers are freed upon the next write or poll
call or when a port is closed or hot-unplugged.

37

4. If the driver negotiated the VIRTIO CONSOLE F MULTIPORT fea-
ture, active ports are announced by the host using the VIRTIO CONSOLE_PORT ADD
control message. The same message is used for port hot-plug as well.

5. If the host specified a port ‘name’; a sysfs attribute is created with the
name filled in, so that udev rules can be written that can create a symlink
from the port’s name to the char device for port discovery by applications
in the guest.

6. Changes to ports’ state are effected by control messages. Appropriate
action is taken on the port indicated in the control message. The layout
of the structure of the control buffer and the events associated are:

struct virtio console control {
uint32_t id; /* Port number x/
uintl6é _t event; /+ The kind of control event x/
uintl6_t value; /+ Extra information for the event x/

};
/* Some events for the internal messages (control packets) =*/

#define VIRTIO CONSOLE_DEVICE READY
#define VIRTIO CONSOLE_PORT ADD
#define VIRTIO CONSOLE PORT REMOVE
#define VIRTIO CONSOLE_PORT READY
#define VIRTIO CONSOLE_CONSOLE_PORT
#define VIRTIO CONSOLE RESIZE
#define VIRTIO CONSOLE_PORT OPEN
#define VIRTIO CONSOLE_PORT NAME

N O Uk W N = O

38

Appendix F: Entropy Device

The virtio entropy device supplies high-quality randomness for guest use.

Configuration

Subsystem Device ID 4
Virtqueues 0:requestq.
Feature bits None currently defined

Device configuration layout None currently defined.

Device Initialization

1. The virtqueue is initialized

Device Operation

When the driver requires random bytes, it places the descriptor of one or more
buffers in the queue. It will be completely filled by random data by the device.

39

Appendix G: Memory
Balloon Device

The virtio memory balloon device is a primitive device for managing guest
memory: the device asks for a certain amount of memory, and the guest supplies
it (or withdraws it, if the device has more than it asks for). This allows the
guest to adapt to changes in allowance of underlying physical memory. If the
feature is negotiated, the device can also be used to communicate guest memory
statistics to the host.

Configuration

Subsystem Device ID 5
Virtqueues O:inflateq. 1:deflateq. 2:statsq.'”

Feature bits

VIRTIO BALLOON_F MUST TELL HOST (0) Host must be
told before pages from the balloon are used.

VIRTIO BALLOON_ F STATS VQ (1) A virtqueue for report-
ing guest memory statistics is present.

Device configuration layout Both fields of this configuration are always avail-
able. Note that they are little endian, despite convention that device fields
are guest endian:

struct virtio balloon config {
u32 num_pages;
u32 actual;

}s

190nly if VIRTIO BALLON_F_STATS_VQ set

40

Device Initialization

1. The inflate and deflate virtqueues are identified.

2. If the VIRTIO BALLOON_F STATS VQ feature bit is negotiated:

(a) Identify the stats virtqueue.
(b) Add one empty buffer to the stats virtqueue and notify the host.

Device operation begins immediately.

Device Operation

Memory Ballooning The device is driven by the receipt of a configuration
change interrupt.

1. The “num_pages” configuration field is examined. If this is greater than
the “actual” number of pages, memory must be given to the balloon. If
it is less than the “actual” number of pages, memory may be taken back
from the balloon for general use.

2. To supply memory to the balloon (aka. inflate):

(a) The driver constructs an array of addresses of unused memory pages.
These addresses are divided by 40962° and the descriptor describing
the resulting 32-bit array is added to the inflateq.

3. To remove memory from the balloon (aka. deflate):

(a) The driver constructs an array of addresses of memory pages it has
previously given to the balloon, as described above. This descriptor
is added to the deflateq.

(b) If the VIRTIO BALLOON_F_ MUST TELL HOST feature is set,
the guest may not use these requested pages until that descriptor in
the deflateq has been used by the device.

(c) Otherwise, the guest may begin to re-use pages previously given to
the balloon before the device has acknowledged their withdrawl. 2!

4. In either case, once the device has completed the inflation or deflation,
the “actual” field of the configuration should be updated to reflect the
new number of pages in the balloon.??

20This is historical, and independent of the guest page size

21In this case, deflation advice is merely a courtesy

22 As updates to configuration space are not atomic, this field isn’t particularly reliable, but
can be used to diagnose buggy guests.

41

Memory Statistics

The stats virtqueue is atypical because communication is driven by the device
(not the driver). The channel becomes active at driver initialization time when
the driver adds an empty buffer and notifies the device. A request for memory
statistics proceeds as follows:

1. The device pushes the buffer onto the used ring and sends an interrupt.
2. The driver pops the used buffer and discards it.

3. The driver collects memory statistics and writes them into a new buffer.
4. The driver adds the buffer to the virtqueue and notifies the device.

5. The device pops the buffer (retaining it to initiate a subsequent request)
and consumes the statistics.

Memory Statistics Format Each statistic consists of a 16 bit tag and a 64
bit value. Both quantities are represented in the native endian of the
guest. All statistics are optional and the driver may choose which ones
to supply. To guarantee backwards compatibility, unsupported statistics
should be omitted.

struct virtio balloon stat {
#define VIRTIO BALLOON S SWAP IN 0
#define VIRTIO_BALLOON_S SWAP_ OUT 1
#define VIRTIO_BALLOON_S_MAJFLT 2
#define VIRTIO BALLOON S_MINFLT 3
#define VIRTIO BALLOON S MEMFREE 4
#define VIRTIO BALLOON S MEMTOT 5
ul6 tag;
u64 val;
} _ _attribute ((packed));

Tags

VIRTIO BALLOON_ S SWAP IN The amount of memory that has
been swapped in (in bytes).

VIRTIO BALLOON_ S SWAP OUT The amount of memory that has
been swapped out to disk (in bytes).

VIRTIO BALLOON_ S MAJFLT The number of major page faults that
have occurred.

VIRTIO BALLOON_S MINFLT The number of minor page faults that
have occurred.

42

VIRTIO BALLOON_S MEMFREE The amount of memory not being
used for any purpose (in bytes).

VIRTIO BALLOON_ S MEMTOT The total amount of memory avail-

able (in bytes).

43

Appendix H: SCSI Host
Device

The virtio SCSI host device groups together one or more virtual logical units
(such as disks), and allows communicating to them using the SCSI protocol. An
instance of the device represents a SCSI host to which many targets and LUNs
are attached.

The virtio SCSI device services two kinds of requests:

e command requests for a logical unit;

e task management functions related to a logical unit, target or command.

The device is also able to send out notifications about added and removed logical
units. Together, these capabilities provide a SCSI transport protocol that uses
virtqueues as the transfer medium. In the transport protocol, the virtio driver
acts as the initiator, while the virtio SCSI host provides one or more targets
that receive and process the requests.

Configuration

Subsystem Device ID 7
Virtqueues 0:controlq; 1:eventq; 2..n:request queues.

Feature bits

VIRTIO SCSI_F INOUT (0) A single request can include both
read-only and write-only data buffers.

VIRTIO SCSI_F HOTPLUG (1) The host should enable hot-plug/hot-
unplug of new LUNs and targets on the SCSI bus.

Device configuration layout All fields of this configuration are always avail-
able. sense size and cdb _size are writable by the guest.

44

struct virtio scsi_config {

u32 num _queues;

u32 seg max;

u32 max_sectors;
u32 cmd_ per lun;

u32 event info size;
u32 sense_size;

u32 cdb _size;

ul6 max channel;
ul6 max_target;

u32 max lun;

}s

num__queues is the total number of request virtqueues exposed by the
device. The driver is free to use only one request queue, or it can use
more to achieve better performance.

seg max is the maximum number of segments that can be in a com-
mand. A bidirectional command can include seg max input seg-
ments and seg_max output segments.

max_sectors is a hint to the guest about the maximum transfer size it
should use.

cmd per lun is a hint to the guest about the maximum number of
linked commands it should send to one LUN. The actual value to be
used is the minimum of ecmd _per lun and the virtqueue size.

event info size is the maximum size that the device will fill for buffers
that the driver places in the eventq. The driver should always put
buffers at least of this size. It is written by the device depending on
the set of negotated features.

sense size is the maximum size of the sense data that the device will
write. The default value is written by the device and will always be
96, but the driver can modify it. It is restored to the default when
the device is reset.

cdb _size is the maximum size of the CDB that the driver will write.
The default value is written by the device and will always be 32, but
the driver can likewise modify it. It is restored to the default when
the device is reset.

max_channel, max target and max lun can be used by the driver
as hints to constrain scanning the logical units on the host.h

Device Initialization

The initialization routine should first of all discover the device’s virtqueues.

45

If the driver uses the eventq, it should then place at least a buffer in the eventq.

The driver can immediately issue requests (for example, INQUIRY or REPORT
LUNS) or task management functions (for example, I T RESET).

Device Operation: request queues

The driver queues requests to an arbitrary request queue, and they are used by
the device on that same queue. It is the responsibility of the driver to ensure
strict request ordering for commands placed on different queues, because they
will be consumed with no order constraints.

Requests have the following format:

struct virtio_ scsi_req_cmd {
// Read—only
u8 lun [8];
u64 id;
u8 task attr;
u8 prio;
u8 crn;
char cdb[cdb _size];
char dataout[];
// Write—only part
u32 sense len;
u3d2 residual;
ul6 status qualifier;
u8 status;
u8 response;
u8 sense[sense size];
char datain[];

}s

/* command—specific response values x/
#define VIRTIO SCSI S OK

#define VIRTIO SCSI_S OVERRUN

#define VIRTIO_SCSI_S_ABORTED

#define VIRTIO_SCSI_S_BAD_TARGET
#define VIRTIO SCSI S RESET

#define VIRTIO SCSI S BUSY

#define VIRTIO SCSI S TRANSPORT FAILURE
#define VIRTIO_SCSI_S_TARGET_FAILURE
#define VIRTIO_SCSI_S_NEXUS_FAILURE
#define VIRTIO SCSI S FAILURE

© 00~ Utk W —=O

/* task attr =/

46

#define VIRTIO SCSI_S SIMPLE
#define VIRTIO SCSI_S ORDERED
#define VIRTIO SCSI S HEAD
#define VIRTIO SCSI_S ACA

W N = O

The lun field addresses a target and logical unit in the virtio-scsi device’s SCSI
domain. The only supported format for the LUN field is: first byte set to 1,
second byte set to target, third and fourth byte representing a single level LUN
structure, followed by four zero bytes. With this representation, a virtio-scsi
device can serve up to 256 targets and 16384 LUNSs per target.

The id field is the command identifier (“tag”).

task attr, prio and crn should be left to zero. task attr defines the task at-
tribute as in the table above, but all task attributes may be mapped to SIMPLE
by the device; crn may also be provided by clients, but is generally expected to
be 0. The maximum CRN value defined by the protocol is 255, since CRN is
stored in an 8-bit integer.

All of these fields are defined in SAM. They are always read-only, as are the
cdb and dataout field. The cdb_size is taken from the configuration space.

sense and subsequent fields are always write-only. The sense len field indi-

cates the number of bytes actually written to the sense buffer. The residual field

indicates the residual size, calculated as “data_length - number of transferred bytes”,

for read or write operations. For bidirectional commands, the number of transferred bytes
includes both read and written bytes. A residual field that is less than the size of

datain means that the dataout field was processed entirely. A residual field that

exceeds the size of datain means that the dataout field was processed partially

and the datain field was not processed at all.

The status byte is written by the device to be the status code as defined in
SAM.

The response byte is written by the device to be one of the following;:
VIRTIO SCSI_S OK when the request was completed and the status byte
is filled with a SCSI status code (not necessarily "GOOD").

VIRTIO SCSI S OVERRUN if the content of the CDB requires trans-
ferring more data than is available in the data buffers.

VIRTIO SCSI S ABORTED ifthe request was cancelled due to an ABORT
TASK or ABORT TASK SET task management function.

VIRTIO SCSI S BAD TARGET if the request was never processed
because the target indicated by the lun field does not exist.

VIRTIO SCSI_S RESET if the request was cancelled due to a bus or
device reset (including a task management function).

47

VIRTIO SCSI_S TRANSPORT_ FAILURE if the request failed due
to a problem in the connection between the host and the target (severed
link).

VIRTIO SCSI S TARGET FAILURE if the target is suffering a fail-
ure and the guest should not retry on other paths.

VIRTIO SCSI S NEXUS FAILURE if the nexus is suffering a failure
but retrying on other paths might yield a different result.

VIRTIO SCSI_S BUSY if the request failed but retrying on the same
path should work.

VIRTIO SCSI_S FAILURE for other host or guest error. In particular,
if neither dataout nor datain is empty, and the VIRTIO _SCSI_F INOUT
feature has not been negotiated, the request will be immediately returned
with a response equal to VIRTIO SCSI S FAILURE.

Device Operation: controlq

The controlq is used for other SCSI transport operations. Requests have the
following format:

struct virtio_ scsi_ctrl {
u32 type;

u8 response;

}s

/* response values valid for all commands %/
#define VIRTIO_SCSI_S_OK

#define VIRTIO SCSI S BAD TARGET

#define VIRTIO SCSI_S BUSY

#define VIRTIO_SCSI_S_TRANSPORT_FAILURE
#define VIRTIO_SCSI_S_TARGET_FAILURE

#define VIRTIO SCSI S NEXUS FAILURE

#define VIRTIO SCSI S FAILURE

#define VIRTIO_SCSI_S_INCORRECT_LUN

= © 00 O otw O

The type identifies the remaining fields.

The following commands are defined:

Task management function

48

o

#define VIRTIO _SCSI_T_TMF

#define VIRTIO SCSI T TMF_ABORT TASK

#define VIRTIO SCSI T TMF ABORT TASK SET
#define VIRTIO SCSI T TMF CLEAR_ACA

#define VIRTIO SCSI T TMF_CLEAR_TASK SET
#define VIRTIO_SCSI_ T TMF_I_T_ NEXUS_RESET
#define VIRTIO SCSI_T TMF LOGICAL UNIT RESET
#define VIRTIO SCSI T TMF_QUERY_TASK

#define VIRTIO SCSI T TMF_QUERY TASK SET

N O Utk W N~ O

struct virtio_ scsi_ctrl tmf
{

// Read—only part

u32 type;

u32 subtype;

u8 lun|[8];

u64 id;

// Write—only part

u8 response;

}

/* command—specific response values x/

#define VIRTIO SCSI_S FUNCTION COMPLETE 0
#define VIRTIO SCSI S FUNCTION SUCCEEDED 10
#define VIRTIO SCSI_S FUNCTION REJECTED 11

The type is VIRTIO _SCSI_T TMF; the subtype field defines. All fields
except response are filled by the driver. The subtype field must always
be specified and identifies the requested task management function.

Other fields may be irrelevant for the requested TMF; if so, they are
ignored but they should still be present. The lun field is in the same format
specified for request queues; the single level LUN is ignored when the task
management function addresses a whole I T nexus. When relevant, the
value of the id field is matched against the id values passed on the requestq.

The outcome of the task management function is written by the device

in the response field. The command-specific response values map 1-to-1
with those defined in SAM.

Asynchronous notification query

#define VIRTIO SCSI T AN QUERY 1

struct virtio_ scsi_ctrl an {
// Read—only part

49

}

ud2 type;

u8 lun|[8];

u32 event requested;
// Write—only part
u32 event actual;

u8 response;

#define VIRTIO SCSI_EVT ASYNC_ OPERATIONAL CHANGE 2

#define VIRTIO SCSI EVT ASYNC POWER_MGMT 4
#define VIRTIO SCSI EVT_ ASYNC EXTERNAL REQUEST 8
#define VIRTIO SCSI_EVT ASYNC_ MEDIA CHANGE 16
#define VIRTIO SCSI EVT ASYNC_ MULTI HOST 32
#define VIRTIO SCSI EVT ASYNC DEVICE BUSY 64

By sending this command, the driver asks the device which events the
given LUN can report, as described in paragraphs 6.6 and A.6 of the SCSI
MMC specification. The driver writes the events it is interested in into
the event requested; the device responds by writing the events that it
supports into event _actual.

The typeis VIRTIO _SCSI_T_AN_QUERY. The lun and event requested
fields are written by the driver. The event actual and response fields
are written by the device.

No command-specific values are defined for the response byte.

Asynchronous notification subscription

#define VIRTIO SCSI T AN SUBSCRIBE 2

struct virtio_ scsi_ctrl an {

}

// Read—only part
u32 type;

u8 lun|[8];

u32 event requested;
// Write—only part
u32 event actual;

u8 response;

By sending this command, the driver asks the specified LUN to report
events for its physical interface, again as described in the SCSI MMC
specification. The driver writes the events it is interested in into the
event _requested; the device responds by writing the events that it sup-
ports into event _actual.

Event types are the same as for the asynchronous notification query mes-

sage.

a0

The typeis VIRTIO_SCSI_T_AN_SUBSCRIBE. The lun and event _requested
fields are written by the driver. The event actual and response fields
are written by the device.

No command-specific values are defined for the response byte.

Device Operation: eventq

The eventq is used by the device to report information on logical units that are
attached to it. The driver should always leave a few buffers ready in the eventq.
In general, the device will not queue events to cope with an empty eventq, and
will end up dropping events if it finds no buffer ready. However, when reporting
events for many LUNs (e.g. when a whole target disappears), the device can
throttle events to avoid dropping them. For this reason, placing 10-15 buffers
on the event queue should be enough.

Buffers are placed in the eventq and filled by the device when interesting events
occur. The buffers should be strictly write-only (device-filled) and the size
of the buffers should be at least the value given in the device’s configuration
information.

Buffers returned by the device on the eventq will be referred to as "events" in
the rest of this section. Events have the following format:

#define VIRTIO_SCSI_T_ EVENTS_MISSED 0x80000000

struct virtio_scsi_event {
// Write—only part
u3d2 event;

}

If bit 31 is set in the event field, the device failed to report an event due to
missing buffers. In this case, the driver should poll the logical units for unit
attention conditions, and/or do whatever form of bus scan is appropriate for
the guest operating system.

Other data that the device writes to the buffer depends on the contents of the
event field. The following events are defined:

No event

#define VIRTIO SCSI T NO_EVENT 0

This event is fired in the following cases:

o1

e When the device detects in the eventq a buffer that is shorter than
what is indicated in the configuration field, it might use it immedi-
ately and put this dummy value in the event field. A well-written
driver will never observe this situation.

e When events are dropped, the device may signal this event as soon as
the drivers makes a buffer available, in order to request action from
the driver. In this case, of course, this event will be reported with
the VIRTIO SCSI_T EVENTS MISSED flag.

Transport reset

#define VIRTIO SCSI_ T TRANSPORT RESET 1

struct virtio_ scsi_event reset {
// Write—only part
u32 event;
u8 lun|[8];
u32 reason;

}

#define VIRTIO SCSI EVT_ RESET HARD 0
#define VIRTIO SCSI_EVT RESET RESCAN 1
#define VIRTIO SCSI_EVT_ RESET REMOVED 2

By sending this event, the device signals that a logical unit on a target
has been reset, including the case of a new device appearing or disap-
pearing on the bus.The device fills in all fields. The event field is set
to VIRTIO SCSI_T TRANSPORT RESET. The lun field addresses a
logical unit in the SCSI host.

The reason value is one of the three #define values appearing above:

e VIRTIO SCSI _EVT RESET REMOVED (“LUN/target re-
moved”) is used if the target or logical unit is no longer able to receive
commands.

e VIRTIO SCSI _EVT RESET HARD (“LUN hard reset”) is
used if the logical unit has been reset, but is still present.

e VIRTIO SCSI_EVT_ RESET_ RESCAN (“rescan LUN /tar-
get”) is used if a target or logical unit has just appeared on the device.

The “removed” and “rescan” events, when sent for LUN 0, may apply to
the entire target. After receiving them the driver should ask the initiator
to rescan the target, in order to detect the case when an entire target has
appeared or disappeared. These two events will never be reported unless
the VIRTIO SCSI_F HOTPLUG feature was negotiated between
the host and the guest.

92

Events will also be reported via sense codes (this obviously does not ap-
ply to newly appeared buses or targets, since the application has never
discovered them):

e “LUN /target removed” maps to sense key ILLEGAL REQUEST, asc
0x25, ascq 0x00 (LOGICAL UNIT NOT SUPPORTED)

e “LUN hard reset” maps to sense key UNIT ATTENTION, asc 0x29
(POWER ON, RESET OR BUS DEVICE RESET OCCURRED)

e “rescan LUN /target” maps to sense key UNIT ATTENTION, asc
0x3f, ascq 0x0e (REPORTED LUNS DATA HAS CHANGED)

The preferred way to detect transport reset is always to use events, because
sense codes are only seen by the driver when it sends a SCSI command
to the logical unit or target. However, in case events are dropped, the
initiator will still be able to synchronize with the actual state of the con-
troller if the driver asks the initiator to rescan of the SCSI bus. During
the rescan, the initiator will be able to observe the above sense codes, and
it will process them as if it the driver had received the equivalent event.

Asynchronous notification

#define VIRTIO SCSI_T ASYNC NOTIFY 2

struct virtio scsi_event an {
// Write—only part
u3d2 event;
u8 lun|[8];
u32 reason;

}

By sending this event, the device signals that an asynchronous event was
fired from a physical interface.

All fields are written by the device. The event field is set to VIR-
TIO SCSI T ASYNC NOTIFY. The lun field addresses a logical unit
in the SCSI host. The reason field is a subset of the events that the
driver has subscribed to via the "Asynchronous notification subscription"
command.

When dropped events are reported, the driver should poll for asynchronous
events manually using SCSI commands.

33

Appendix X: virtio-mmio

Virtual environments without PCI support (a common situation in embedded
devices models) might use simple memory mapped device (“virtio-mmio”) in-
stead of the PCI device.

The memory mapped virtio device behaviour is based on the PCI device specifi-
cation. Therefore most of operations like device initialization, queues configura-
tion and buffer transfers are nearly identical. Existing differences are described
in the following sections.

Device Initialization

Instead of using the PCI IO space for virtio header, the “virtio-mmio” device
provides a set of memory mapped control registers, all 32 bits wide, followed by
device-specific configuration space. The following list presents their layout:

o Offset from the device base address | Direction | Name
Description

e 0x000 | R | MagicValue
“virt” string.

e 0x004 | R | Version
Device version number. Currently must be 1.

e 0x008 | R | DevicelD
Virtio Subsystem Device ID (ie. 1 for network card).

e 0x00c | R | VendorID
Virtio Subsystem Vendor ID.

e 0x010 | R | HostFeatures
Flags representing features the device supports.
Reading from this register returns 32 consecutive flag bits, first bit depend-
ing on the last value written to HostFeaturesSel register. Access to this
register returns bits HostFeaturesSel+32 to (HostFeaturesSel*32)+31,

o4

eg. feature bits 0 to 31 if HostFeaturesSel is set to 0 and features bits 32
to 63 if HostFeaturesSel is set to 1. Also see 2.2.2.2

0x014 | W | HostFeaturesSel

Device (Host) features word selection.

Writing to this register selects a set of 32 device feature bits accessible by
reading from HostFeatures register. Device driver must write a value to
the HostFeaturesSel register before reading from the HostFeatures register.

0x020 | W | GuestFeatures

Flags representing device features understood and activated by the driver.
Writing to this register sets 32 consecutive flag bits, first bit depending on
the last value written to GuestFeaturesSel register. Access to this register
sets bits GuestFeaturesSel x 32 to (GuestFeaturesSel x 32) + 31, eg.
feature bits 0 to 31 if GuestFeaturesSel is set to 0 and features bits 32 to
63 if GuestFeaturesSel is set to 1. Also see 2.2.2.2

0x024 | W | GuestFeaturesSel

Activated (Guest) features word selection.

Writing to this register selects a set of 32 activated feature bits accessi-
ble by writing to the GuestFeatures register. Device driver must write a
value to the GuestFeaturesSel register before writing to the GuestFeatures
register.

0x028 | W | GuestPageSize

Guest page size.

Device driver must write the guest page size in bytes to the register during
initialization, before any queues are used. This value must be a power of
2 and is used by the Host to calculate Guest address of the first queue
page (see QueuePFN).

0x030 | W | QueueSel

Virtual queue index (first queue is 0).

Writing to this register selects the virtual queue that the following oper-
ations on QueueNum, QueueAlign and QueuePFN apply to.

0x034 | R | QueueNumMax

Maximum virtual queue size.

Reading from the register returns the maximum size of the queue the Host
is ready to process or zero (0x0) if the queue is not available. This applies
to the queue selected by writing to QueueSel and is allowed only when
QueuePFN is set to zero (0x0), so when the queue is not actively used.

0x038 | W | QueueNum

Virtual queue size.

Queue size is a number of elements in the queue, therefore size of the
descriptor table and both available and used rings.

Writing to this register notifies the Host what size of the queue the Guest
will use. This applies to the queue selected by writing to QueueSel.

39

e 0x03c | W | QueueAlign
Used Ring alignment in the virtual queue.
Writing to this register notifies the Host about alignment boundary of the
Used Ring in bytes. This value must be a power of 2 and applies to the
queue selected by writing to QueueSel.

e 0x040 | RW | QueuePFN
Guest physical page number of the virtual queue.
Writing to this register notifies the host about location of the virtual queue
in the Guest’s physical address space. This value is the index number of
a page starting with the queue Descriptor Table. Value zero (0x0) means
physical address zero (0x00000000) and is illegal. When the Guest stops
using the queue it must write zero (0x0) to this register.
Reading from this register returns the currently used page number of the
queue, therefore a value other than zero (0x0) means that the queue is in
use.
Both read and write accesses apply to the queue selected by writing to
QueueSel.

e 0x050 | W | QueueNotify
Queue notifier.
Writing a queue index to this register notifies the Host that there are new
buffers to process in the queue.

e 0x60 | R | InterruptStatus
Interrupt status.
Reading from this register returns a bit mask of interrupts asserted by the
device. An interrupt is asserted if the corresponding bit is set, ie. equals
one (1).

— Bit 0 | Used Ring Update
This interrupt is asserted when the Host has updated the Used Ring
in at least one of the active virtual queues.

— Bit 1 | Configuration change
This interrupt is asserted when configuration of the device has changed.

e 0x064 | W | Interrupt ACK
Interrupt acknowledge.
Writing to this register notifies the Host that the Guest finished handling
interrupts. Set bits in the value clear the corresponding bits of the Inter-
ruptStatus register.

e 0x070 | RW | Status
Device status.
Reading from this register returns the current device status flags.
Writing non-zero values to this register sets the status flags, indicating the
Guest progress. Writing zero (0x0) to this register triggers a device reset.
Also see 2.2.1

96

e 0x100+ | RW | Config
Device-specific configuration space starts at an offset 0x100 and is accessed
with byte alignment. Its meaning and size depends on the device and the
driver.

Virtual queue size is a number of elements in the queue, therefore size of the
descriptor table and both available and used rings.

The endianness of the registers follows the native endianness of the Guest. Writ-
ing to registers described as “R” and reading from registers described as “W” is
not permitted and can cause undefined behavior.

The device initialization is performed as described in 2.2.1 with one exception:
the Guest must notify the Host about its page size, writing the size in bytes to
GuestPageSize register before the initialization is finished.

The memory mapped virtio devices generate single interrupt only, therefore no
special configuration is required.

Virtqueue Configuration

The virtual queue configuration is performed in a similar way to the one de-
scribed in 2.3 with a few additional operations:

1. Select the queue writing its index (first queue is 0) to the QueueSel register.

2. Check if the queue is not already in use: read QueuePFN register, returned
value should be zero (0x0).

3. Read maximum queue size (number of elements) from the QueueNumMax
register. If the returned value is zero (0x0) the queue is not available.

4. Allocate and zero the queue pages in contiguous virtual memory, aligning
the Used Ring to an optimal boundary (usually page size). Size of the al-
located queue may be smaller than or equal to the maximum size returned
by the Host.

5. Notify the Host about the queue size by writing the size to QueueNum
register.

6. Notify the Host about the used alignment by writing its value in bytes to
QueueAlign register.

7. Write the physical number of the first page of the queue to the QueuePFN
register.

The queue and the device are ready to begin normal operations now.

37

Device Operation

The memory mapped virtio device behaves in the same way as described in 2.4,
with the following exceptions:

1. The device is notified about new buffers available in a queue by writing
the queue index to register QueueNum instead of the virtio header in PCI
I/0 space (2.4.1.4).

2. The memory mapped virtio device is using single, dedicated interrupt sig-
nal, which is raised when at least one of the interrupts described in the In-
terruptStatus register description is asserted. After receiving an interrupt,
the driver must read the InterruptStatus register to check what caused the
interrupt (see the register description). After the interrupt is handled, the
driver must acknowledge it by writing a bit mask corresponding to the
serviced interrupt to the Interrupt ACK register.

98

