
Virtio PCI Card Speci�cation

v0.8.910 DRAFT

-

Rusty Russell <rusty@rustcorp.com.au>

IBM Corporation

2010 September 27October 6.

Chapter 1

Purpose and Description

This document describes the speci�cations of the �virtio� family of PCI de-
vices. These are devices are found in virtual environments, yet by design they
are not all that di�erent from physical PCI devices, and this document treats
them as such. This allows the guest to use standard PCI drivers and discovery
mechanisms.

The purpose of virtio and this speci�cation is that virtual environments and
guests should have a straightforward, e�cient, standard and extensible mecha-
nism for virtual devices, rather than boutique per-environment or per-OS mech-
anisms.

Straightforward: Virtio PCI devices use normal PCI mechanisms of inter-
rupts and DMA which should be familiar to any device driver author.
There is no exotic page-�ipping or COW mechanism: it's just a PCI de-
vice.1

E�cient: Virtio PCI devices consist of rings of descriptors for input and out-
put, which are neatly separated to avoid cache e�ects from both guest and
device writing to the same cache lines.

Standard: Virtio PCI makes no assumptions about the environment in which
it operates, beyond supporting PCI. In fact the virtio devices speci�ed in
the appendices do not require PCI at all: they have been implemented on
non-PCI buses.2

1This lack of page-sharing implies that the implementation of the device (e.g. the hyper-
visor or host) needs full access to the guest memory. Communication with untrusted parties
(i.e. inter-guest communication) requires copying.

2The Linux implementation further separates the PCI virtio code from the speci�c virtio
drivers: these drivers are shared with the non-PCI implementations (currently lguest and
S/390).

1

Extensible: Virtio PCI devices contain feature bits which are acknowledged
by the guest operating system during device setup. This allows forwards
and backwards compatibility: the device o�ers all the features it knows
about, and the driver acknowledges those it understands and wishes to
use.

1.1 Virtqueues

The mechanism for bulk data transport on virtio PCI devices is pretentiously
called a virtqueue. Each device can have zero or more virtqueues: for example,
the network device has one for transmit and one for receive.

Each virtqueue occupies two or more physically-contiguous pages (de�ned, for
the purposes of this speci�cation, as 4096 bytes), and consists of three parts:

Descriptor Table Available Ring (padding) Used Ring

When the driver wants to send bu�ers to the device, it puts them in one or more
slots in the descriptor table, and writes the descriptor indices into the available
ring. It then noti�es the device. When the device has �nished with the bu�ers,
it writes the descriptors into the used ring, and sends an interrupt.

2

Chapter 2

Speci�cation

2.1 PCI Discovery

Any PCI device with Vendor ID 0x1AF4, and Device ID 0x1000 through 0x103F
inclusive is a virtio device1. The device must also have a Revision ID of 0 to
match this speci�cation.

The Subsystem Device ID indicates which virtio device is supported by the
device. The Subsystem Vendor ID should re�ect the PCI Vendor ID of the
environment (it's currently only used for informational purposes by the guest).

Subsystem Device ID Virtio Device Speci�cation

1 network card Appendix C
2 block device Appendix D
3 console Appendix E
4 entropy source Appendix F
5 memory ballooning Appendix G
6 ioMemory -
9 9P transport -

2.2 Device Con�guration

To con�gure the device, we use the �rst I/O region of the PCI device. This
contains a virtio header followed by a device-speci�c region.

There may be di�erent widths of accesses to the I/O region; the �natural� access
method for each �eld in the virtio header must be used (i.e. 32-bit accesses for

1The actual value within this range is ignored

3

32-bit �elds, etc), but the device-speci�c region can be accessed using any width
accesses, and should obtain the same results.

Note that this is possible because while the virtio header is PCI (i.e. little)
endian, the device-speci�c region is encoded in the native endian of the guest
(where such distinction is applicable).

2.2.1 Device Initialization Sequence

We start with an overview of device initialization, then expand on the details
of the device and how each step is preformed.

1. Reset the device. This is not required on initial start up.

2. The ACKNOWLEDGE status bit is set: we have noticed the device.

3. The DRIVER status bit is set: we know how to drive the device.

4. Device-speci�c setup, including reading the Device Feature Bits, discov-
ery of virtqueues for the device, optional MSI-X setup, and reading and
possibly writing the virtio con�guration space.

5. The subset of Device Feature Bits understood by the driver is written to
the device.

6. The DRIVER_OK status bit is set.

7. The device can now be used (ie. bu�ers added to the virtqueues)2

If any of these steps go irrecoverably wrong, the guest should set the FAILED
status bit to indicate that it has given up on the device (it can reset the device
later to restart if desired).

We now cover the �elds required for general setup in detail.

2.2.2 Virtio Header

The virtio header looks as follows:

Bits 32 32 32 16 16 16 8 8
Read/Write R R+W R+W R R+W R+W R+W R
Purpose Device Guest Queue Queue Queue Queue Device ISR

Features Features Address Size Select Notify Status Status

If MSI-X is enabled for the device, two additional �elds immediately follow this
header:

2Historically, drivers have used the device before steps 5 and 6. This is only allowed if the
driver does not use any features which would alter this early use of the device.

4

Bits 16 16
Read/Write R+W R+W
Purpose Con�guration Queue

(MSI-X) Vector Vector

Immediately following these general headers, there may be device-speci�c head-
ers:

Bits Device Speci�c
Read/Write Device Speci�c
Purpose Device Speci�c...

2.2.2.1 Device Status

The Device Status �eld is updated by the guest to indicate its progress. This
provides a simple low-level diagnostic: it's most useful to imagine them hooked
up to tra�c lights on the console indicating the status of each device.

The device can be reset by writing a 0 to this �eld, otherwise at least one bit
should be set:

ACKNOWLEDGE (1) Indicates that the guest OS has found the device and
recognized it as a valid virtio device.

DRIVER (2) Indicates that the guest OS knows how to drive the device.
Under Linux, drivers can be loadable modules so there may be a signi�cant
(or in�nite) delay before setting this bit.

DRIVER_OK (3) Indicates that the driver is set up and ready to drive the
device.

FAILED (128) Indicates that something went wrong in the guest, and it has
given up on the device. This could be an internal error, or the driver
didn't like the device for some reason, or even a fatal error during device
operation. The device must be reset before attempting to re-initialize.

2.2.2.2 Feature Bits

The least signi�cant 31 bits of the �rst con�guration �eld indicates the features
that the device supports (the high bit is reserved, and will be used to indicate
the presence of future feature bits elsewhere). The bits are allocated as follows:

0 to 23 Feature bits for the speci�c device type

24 to 30 Feature bits reserved for extensions to the queue mechanism

5

For example, feature bit 0 for a network device (i.e. Subsystem Device ID 1)
indicates that the device supports checksumming of packets.

The feature bits are negotiated: the device lists all the features it understands
in the Device Features �eld, and the guest writes the subset that it understands
into the Guest Features �eld. The only way to renegotiate is to reset the device.

In particular, new �elds in the device con�guration header are indicated by
o�ering a feature bit, so the guest can check before accessing that part of the
con�guration space.

This allows for forwards and backwards compatibility: if the device is enhanced
with a new feature bit, older guests will not write that feature bit back to the
Guest Features �eld and it can go into backwards compatibility mode. Similarly,
if a guest is enhanced with a feature that the device doesn't support, it will not
see that feature bit in the Device Features �eld and can go into backwards com-
patibility mode (or, for poor implementations, set the FAILED Device Status
bit).

2.2.2.3 Con�guration/Queue Vectors

When MSI-X capability is present and enabled in the device (through standard
PCI con�guration space) 4 bytes at byte o�set 20 are used to map con�guration
change and queue interrupts to MSI-X vectors. In this case, the ISR Status
�eld is unused, and device speci�c con�guration starts at byte o�set 24 in vir-
tio header structure. When MSI-X capability is not enabled, device speci�c
con�guration starts at byte o�set 20 in virtio header.

Writing a valid MSI-X Table entry number, 0 to 0x7FF, to one of Con�gu-
ration/Queue Vector registers, maps interrupts triggered by the con�guration
change/selected queue events respectively to the corresponding MSI-X vector.
To disable interrupts for a speci�c event type, unmap it by writing a special
NO_VECTOR value:

/∗ Vector va lue used to d i s ab l e MSI f o r queue ∗/
#de f i n e VIRTIO_MSI_NO_VECTOR 0 x f f f f

Reading these registers returns vector mapped to a given event, or NO_VECTOR
if unmapped. All queue and con�guration change events are unmapped by de-
fault.

Note that mapping an event to vector might require allocating internal de-
vice resources, and might fail. Devices report such failures by returning the
NO_VECTOR value when the relevant Vector �eld is read. After mapping
an event to vector, the driver must verify success by reading the Vector �eld
value: on success, the previously written value is returned, and on failure,
NO_VECTOR is returned. If a mapping failure is detected, the driver can
retry mapping with fewervectors, or disable MSI-X.

6

2.3 Virtqueue Con�guration

As a device can have zero or more virtqueues for bulk data transport (for ex-
ample, the network driver has two), the driver needs to con�gure them as part
of the device-speci�c con�guration.

This is done as follows, for each virtqueue a device has:

1. Write the virtqueue index (�rst queue is 0) to the Queue Select �eld.

2. Read the virtqueue size from the Queue Size �eld, which is always a power
of 2. This controls how big the virtqueue is (see below). If this �eld is 0,
the virtqueue does not exist.

3. Allocate and zero virtqueue in contiguous physical memory, on a 4096
byte alignment. Write the physical address, divided by 4096 to the Queue
Address �eld.3

4. Optionally, if MSI-X capability is present and enabled on the device, select
a vector to use to request interrupts triggered by virtqueue events. Write
the MSI-X Table entry number corresponding to this vector in Queue
Vector �eld. Read the Queue Vector �eld: on success, previously written
value is returned; on failure, NO_VECTOR value is returned.

The Queue Size �eld controls the total number of bytes required for the virtqueue
according to the following formula:

#de f i n e ALIGN(x) (((x) + 4095) & ~4095)
s t a t i c i n l i n e unsigned vr ing_s i ze (unsigned i n t qsz)
{

re turn ALIGN(s i z e o f (s t r u c t vring_desc)∗ qsz + s i z e o f (u16)∗ (2 + qsz))
+ ALIGN(s i z e o f (s t r u c t vring_used_elem)∗ qsz) ;

}

This currently wastes some space with padding, but also allows future exten-
sions. The virtqueue layout structure looks like this (qsz is the Queue Size �eld,
which is a variable, so this code won't compile):

s t r u c t vr ing {
/∗ The ac tua l d e s c r i p t o r s (16 bytes each) ∗/
s t r u c t vring_desc desc [qsz] ;

/∗ A r ing o f a v a i l a b l e d e s c r i p t o r heads with f r e e−running index . ∗/
s t r u c t vr ing_ava i l a v a i l ;

3The 4096 is based on the x86 page size, but it's also large enough to ensure that the
separate parts of the virtqueue are on separate cache lines.

7

// Padding to the next 4096 boundary .
char pad [] ;

// A r ing o f used d e s c r i p t o r heads with f r e e−running index .
s t r u c t vring_used used ;

} ;

2.3.1 A Note on Virtqueue Endianness

Note that the endian of these �elds and everything else in the virtqueue is the
native endian of the guest, not little-endian as PCI normally is. This makes for
simpler guest code, and it is assumed that the host already has to be deeply
aware of the guest endian so such an �endian-aware� device is not a signi�cant
issue.

2.3.2 Descriptor Table

The descriptor table refers to the bu�ers the guest is using for the device. The
addresses are physical addresses, and the bu�ers can be chained via the next
�eld. Each descriptor describes a bu�er which is read-only or write-only, but a
chain of descriptors can contain both read-only and write-only bu�ers.

No descriptor chain may be more than 2^32 bytes long in total.

s t r u c t vring_desc {
/∗ Address (guest−phy s i c a l) . ∗/
u64 addr ;
/∗ Length . ∗/
u32 l en ;

/∗ This marks a bu f f e r as cont inu ing v ia the next f i e l d . ∗/
#de f i n e VRING_DESC_F_NEXT 1
/∗ This marks a bu f f e r as write−only (o therwi se read−only) . ∗/
#de f i n e VRING_DESC_F_WRITE 2
/∗ This means the bu f f e r conta in s a l i s t o f bu f f e r d e s c r i p t o r s . ∗/
#de f i n e VRING_DESC_F_INDIRECT 4

/∗ The f l a g s as i nd i c a t ed above . ∗/
u16 f l a g s ;
/∗ Next f i e l d i f f l a g s & NEXT ∗/
u16 next ;

} ;

The number of descriptors in the table is speci�ed by the Queue Size �eld for
this virtqueue.

8

2.3.3 Indirect Descriptors

Some devices bene�t by concurrently dispatching a large number of large re-
quests. The VIRTIO_RING_F_INDIRECT_DESC feature can be used to
allow this (see 3). To increase ring capacity it is possible to store a table of in-
direct descriptors anywhere in memory, and insert a descriptor in main virtqueue
(with �ags&INDIRECT on) that refers to memory bu�er containing this indi-
rect descriptor table; �elds addr and len refer to the indirect table address and
length in bytes, respectively. The indirect table layout structure looks like this
(len is the length of the descriptor that refers to this table, which is a variable,
so this code won't compile):

s t r u c t i nd i r e c t_de s c r i p t o r_tab l e {
/∗ The ac tua l d e s c r i p t o r s (16 bytes each) ∗/
s t r u c t vring_desc desc [l en / 1 6] ;

} ;

The �rst indirect descriptor is located at start of the indirect descriptor table (in-
dex 0), additional indirect descriptors are chained by next �eld. An indirect de-
scriptor without next �eld (with �ags&NEXT o�) signals the end of the indirect
descriptor table, and transfers control back to the main virtqueue. An indirect
descriptor can not refer to another indirect descriptor table (�ags&INDIRECT
must be o�). A single indirect descriptor table can include both read-only and
write-only descriptors; write-only �ag (�ags&WRITE) in the descriptor that
refers to it is ignored.

2.3.4 Available Ring

The available ring refers to what descriptors we are o�ering the device: it refers
to the head of a descriptor chain. The ��ags� �eld is currently 0 or 1: 1 indicating
that we do not need an interrupt when the device consumes a descriptor from
the available ring. This interrupt suppression is merely an optimization; it may
not suppress interrupts entirely.

The �idx� �eld indicates where we would put the next descriptor entry (modulo
the ring size). This starts at 0, and increases.

s t r u c t vr ing_ava i l {
#de f i n e VRING_AVAIL_F_NO_INTERRUPT 1

u16 f l a g s ;
u16 idx ;
u16 r ing [qsz] ; /∗ qsz i s the Queue S i z e f i e l d read from dev i ce ∗/

} ;

9

2.3.5 Used Ring

The used ring is where the device returns bu�ers once it is done with them. The
�ags �eld can be used by the device to hint that no noti�cation is necessary when
the guest adds to the available ring (the �ag is kept here because this is the
only part of the virtqueue written by the device).

Each entry in the ring is a pair: the head entry of the descriptor chain describing
the bu�er (this matches an entry placed in the available ring by the guest
earlier), and the total of bytes written into the bu�er. The latter is extremely
useful for guests using untrusted bu�ers: if you do not know exactly how much
has been written by the device, you usually have to zero the bu�er to ensure no
data leakage occurs.

/∗ u32 i s used here f o r i d s f o r padding reasons . ∗/
s t r u c t vring_used_elem {

/∗ Index o f s t a r t o f used d e s c r i p t o r chain . ∗/
u32 id ;
/∗ Total l ength o f the d e s c r i p t o r chain which was used (wr i t t en to) ∗/
u32 l en ;

} ;

s t r u c t vring_used {
#de f i n e VRING_USED_F_NO_NOTIFY 1

u16 f l a g s ;
u16 idx ;
s t r u c t vring_used_elem r ing [qsz] ;

} ;

2.3.6 Helpers for Managing Virtqueues

The Linux Kernel Source code contains the de�nitions above and helper rou-
tines in a more usable form, in include/linux/virtio_ring.h. This was explicitly
licensed by IBM under the (3-clause) BSD license so that it can be freely used
by all other projects, and is reproduced (with slight variation to remove Linux
assumptions) in Appendix A.

2.4 Device Operation

There are two parts to device operation: supplying new bu�ers to the device,
and processing used bu�ers from the device. As an example, the virtio network
device has two virtqueues: the transmit virtqueue and the receive virtqueue.
The driver adds outgoing (read-only) packets to the transmit virtqueue, and
then frees them after they are used. Similarly, incoming (write-only) bu�ers are
added to the receive virtqueue, and processed after they are used.

10

2.4.1 Supplying Bu�ers to The Device

Actual transfer of bu�ers from the guest OS to the device operates as follows:

1. Place the bu�er(s) into free descriptor(s).

(a) If there are no free descriptors, the guest may choose to notify the
device even if noti�cations are suppressed (to reduce latency).4

2. Place the id of the bu�er in the next ring entry of the available ring.

3. The steps (1) and (2) may be performed repeatedly if batching is possible.

4. A memory barrier should be executed to ensure the device sees the updated
descriptor table and available ring before the next step.

5. The available �idx� �eld should be increased by the number of entries
added to the available ring.

6. A memory barrier should be executed to ensure that we update the idx
�eld before checking for noti�cation suppression.

7. If noti�cations are not suppressed, the device should be noti�ed of the
new bu�ers.

Note that the above code does not take precautions against the available ring
bu�er wrapping around: this is not possible since the ring bu�er is the same
size as the descriptor table, so step (1) will prevent such a condition.

In addition, the maximum queue size is 32768 (it must be a power of 2 which
�ts in 16 bits), so the 16-bit �idx� value can always distinguish between a full
and empty bu�er.

Here is a description of each stage in more detail.

2.4.1.1 Placing Bu�ers Into The Descriptor Table

A bu�er consists of zero or more read-only physically-contiguous elements fol-
lowed by zero or more physically-contiguous write-only elements (it must have
at least one element). This algorithm maps it into the descriptor table:

1. for each bu�er element, b:

(a) Get the next free descriptor table entry, d

(b) Set d.addr to the physical address of the start of b

4The Linux drivers do this only for read-only bu�ers: for write-only bu�ers, it is assumed
that the driver is merely trying to keep the receive bu�er ring full, and no noti�cation of this
expected condition is necessary.

11

(c) Set d.len to the length of b.

(d) If b is write-only, set d.flags to VRING_DESC_F_WRITE, oth-
erwise 0.

(e) If there is a bu�er element after this:

i. Set d.next to the index of the next free descriptor element.

ii. Set the VRING_DESC_F_NEXT bit in d.flags.

In practice, the d.next �elds are usually used to chain free descriptors, and a
separate count kept to check there are enough free descriptors before beginning
the mappings.

2.4.1.2 Updating The Available Ring

The head of the bu�er we mapped is the �rst d in the algorithm above. A naive
implementation would do the following:

ava i l−>r ing [ava i l−>idx % qsz] = head ;

However, in general we can add many descriptors before we update the �idx�
�eld (at which point they become visible to the device), so we keep a counter
of how many we've added:

ava i l−>r ing [(ava i l−>idx + added++) % qsz] = head ;

2.4.1.3 Updating The Index Field

Once the idx �eld of the virtqueue is updated, the device will be able to access
the descriptor entries we've created and the memory they refer to. This is why
a memory barrier is generally used before the idx update, to ensure it sees the
most up-to-date copy.

The idx �eld always increments, and we let it wrap naturally at 65536:

ava i l−>idx += added ;

2.4.1.4 Notifying The Device

Device noti�cation occurs by writing the 16-bit virtqueue index of this virtqueue
to the Queue Notify �eld of the virtio header in the �rst I/O region of the
PCI device. This can be expensive, however, so the device can suppress such
noti�cations if it doesn't need them. We have to be careful to expose the new
idx value before checking the suppression �ag: it's OK to notify gratuitously,
but not to omit a required noti�cation. So again, we use a memory barrier here
before reading the �ags.

If the VRING_USED_F_NOTIFY �ag is not set, we go ahead and write to
the PCI con�guration space.

12

2.4.2 Receiving Used Bu�ers From The Device

Once the device has used a bu�er (read from or written to it, or parts of both,
depending on the nature of the virtqueue and the device), it sends an interrupt,
following an algorithm very similar to the algorithm used for the driver to send
the device a bu�er:

1. Write the head descriptor number to the next �eld in the used ring.

2. Update the used ring idx.

3. If the VRING_AVAIL_F_NO_INTERRUPT �ag is not set in avail->�ags:

(a) If MSI-X capability is disabled:

i. Set the lower bit of the ISR Status �eld for the device.

ii. Send the appropriate PCI interrupt for the device.

(b) If MSI-X capability is enabled:

i. Request the appropriate MSI-X interrupt message for the device,
Queue Vector �eld sets the MSI-X Table entry number.

ii. If Queue Vector �eld value is NO_VECTOR, no interrupt mes-
sage is requested for this event.

The guest interrupt handler should:

1. If MSI-X capability is disabled: read the ISR Status �eld, which will reset
it to zero. If the lower bit is zero, the interrupt was not for this device.
Otherwise, the guest driver should look through the used rings of each
virtqueue for the device, to see if any progress has been made by the
device which requires servicing.

2. If MSI-X capability is enabled: look through the used rings of each virtqueue
mapped to the speci�c MSI-X vector for the device, to see if any progress
has been made by the device which requires servicing.

whi l e (vq−>last_seen_used != vring−>used . idx) {
s t r u c t vring_used_elem ∗e = vr ing . used−>r ing [vq−>last_seen_used%vsz] ;
p roce s s_buf f e r (e) ;
vq−>last_seen_used++;

}

13

2.4.3 Dealing With Con�guration Changes

Some virtio PCI devices can change the device con�guration state, as re�ected
in the virtio header in the PCI con�guration space. In this case:

1. If MSI-X capability is disabled: an interrupt is delivered and the sec-
ond highest bit is set in the ISR Status �eld to indicate that the driver
should re-examine the con�guration space.Note that a single interrupt can
indicate both that one or more virtqueue has been used and that the con-
�guration space has changed: even if the con�g bit is set, virtqueues must
be scanned.

2. If MSI-X capability is enabled: an interrupt message is requested. The
Con�guration Vector �eld sets the MSI-X Table entry number to use. If
Con�guration Vector �eld value is NO_VECTOR, no interrupt message
is requested for this event.

14

Chapter 3

Creating New Device Types

Various considerations are necessary when creating a new device type:

How Many Virtqueues?

It is possible that a very simple device will operate entirely through its con�g-
uration space, but most will need at least one virtqueue in which it will place
requests. A device with both input and output (eg. console and network de-
vices described here) need two queues: one which the driver �lls with bu�ers to
receive input, and one which the driver places bu�ers to transmit output.

What Con�guration Space Layout?

Con�guration space is generally used for rarely-changing or initialization-time
parameters. But it is a limited resource, so it might be better to use a virtqueue
to update con�guration information (the network device does this for �ltering,
otherwise the table in the con�g space could potentially be very large).

Note that this space is generally the guest's native endian, rather than PCI's
little-endian.

What Device Number?

Currently device numbers are assigned quite freely: a simple request mail to
the author of this document or the Linux virtualization mailing list1 will be
su�cient to secure a unique one.

1https://lists.linux-foundation.org/mailman/listinfo/virtualization

15

Meanwhile for experimental drivers, use 65535 and work backwards.

How many MSI-X vectors?

Using the optional MSI-X capability devices can speed up interrupt processing
by removing the need to read ISR Status register by guest driver (which might be
an expensive operation), reducing interrupt sharing between devices and queues
within the device, and handling interrupts from multiple CPUs. However, some
systems impose a limit (which might be as low as 256) on the total number of
MSI-X vectors that can be allocated to all devices. Devices and/or device drivers
should take this into account, limiting the number of vectors used unless the
device is expected to cause a high volume of interrupts. Devices can control the
number of vectors used by limiting the MSI-X Table Size or not presenting MSI-
X capability in PCI con�guration space. Drivers can control this by mapping
events to as small number of vectors as possible, or disabling MSI-X capability
altogether.

Message Framing

The descriptors used for a bu�er should not e�ect the semantics of the message,
except for the total length of the bu�er. For example, a network bu�er consists
of a 10 byte header followed by the network packet. Whether this is presented
in the ring descriptor chain as (say) a 10 byte bu�er and a 1514 byte bu�er, or
a single 1524 byte bu�er, or even three bu�ers, should have no e�ect.

In particular, no implementation should use the descriptor boundaries to deter-
mine the size of any header in a request.2

Device Improvements

Any change to con�guration space, or new virtqueues, or behavioural changes,
should be indicated by negotiation of a new feature bit. This establishes clarity3

and avoids future expansion problems.

Clusters of functionality which are always implemented together can use a sin-
gle bit, but if one feature makes sense without the others they should not be
gratuitously grouped together to conserve feature bits. We can always extend
the spec when the �rst person needs more than 24 feature bits for their device.

2The current qemu device implementations mistakenly insist that the �rst descriptor cover
the header in these cases exactly, so a cautious driver should arrange it so.

3Even if it does mean documenting design or implementation mistakes!

16

Nomenclature

PCI Peripheral Component Interconnect; a common device bus. See
http://en.wikipedia.org/wiki/Peripheral Component Interconnect

virtualized Environments where access to hardware is restricted (and often em-
ulated) by a hypervisor.

17

Appendix A: virtio_ring.h

#i f n d e f VIRTIO_RING_H
#de f i n e VIRTIO_RING_H
/∗ An i n t e r f a c e f o r e f f i c i e n t v i r t i o implementation .
∗
∗ This header i s BSD l i c e n s e d so anyone can use the d e f i n i t i o n s
∗ to implement compatible d r i v e r s / s e r v e r s .
∗
∗ Copyright 2007 , 2009 , IBM Corporat ion
∗ Al l r i g h t s r e s e rved .
∗
∗ Red i s t r i bu t i on and use in source and binary forms , with or without
∗ modi f i ca t i on , are permitted provided that the f o l l ow i ng cond i t i on s
∗ are met :
∗ 1 . Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight
∗ not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r .
∗ 2 . Red i s t r i bu t i on s in binary form must reproduce the above copyr ight
∗ not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r in the
∗ documentation and/or other mat e r i a l s provided with the d i s t r i b u t i o n .
∗ 3 . Ne i ther the name o f IBM nor the names o f i t s c on t r i bu t o r s
∗ may be used to endorse or promote products der ived from th i s so f tware
∗ without s p e c i f i c p r i o r wr i t t en permis s ion .
∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ` `AS IS ' ' AND
∗ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
∗ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
∗ ARE DISCLAIMED. IN NO EVENT SHALL IBM OR CONTRIBUTORS BE LIABLE
∗ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
∗ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
∗ OR SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
∗ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT
∗ LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
∗ OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
∗ SUCH DAMAGE.
∗/

18

/∗ This marks a bu f f e r as cont inu ing v ia the next f i e l d . ∗/
#de f i n e VRING_DESC_F_NEXT 1
/∗ This marks a bu f f e r as write−only (o therwi se read−only) . ∗/
#de f i n e VRING_DESC_F_WRITE 2

/∗ The Host uses t h i s in used−>f l a g s to adv i s e the Guest : don ' t k i ck me
∗ when you add a bu f f e r . I t ' s un r e l i ab l e , so i t ' s s imply an
∗ opt imiza t i on . Guest w i l l s t i l l k i ck i f i t ' s out o f b u f f e r s . ∗/

#de f i n e VRING_USED_F_NO_NOTIFY 1
/∗ The Guest uses t h i s in ava i l−>f l a g s to adv i s e the Host : don ' t
∗ i n t e r r up t me when you consume a bu f f e r . I t ' s un r e l i ab l e , so i t ' s
∗ s imply an opt imiza t i on . ∗/

#de f i n e VRING_AVAIL_F_NO_INTERRUPT 1

/∗ Vi r t i o r ing d e s c r i p t o r s : 16 bytes .
∗ These can chain toge the r v ia "next " . ∗/
s t r u c t vring_desc {

/∗ Address (guest−phy s i c a l) . ∗/
uint64_t addr ;
/∗ Length . ∗/
uint32_t l en ;
/∗ The f l a g s as i nd i c a t ed above . ∗/
uint16_t f l a g s ;
/∗ We chain unused d e s c r i p t o r s v ia th i s , too ∗/
uint16_t next ;

} ;

s t r u c t vr ing_ava i l {
uint16_t f l a g s ;
uint16_t idx ;
uint16_t r ing [] ;

} ;

/∗ u32 i s used here f o r i d s f o r padding reasons . ∗/
s t r u c t vring_used_elem {

/∗ Index o f s t a r t o f used d e s c r i p t o r chain . ∗/
uint32_t id ;
/∗ Total l ength o f the d e s c r i p t o r chain which was wr i t t en to . ∗/
uint32_t l en ;

} ;

s t r u c t vring_used {
uint16_t f l a g s ;
uint16_t idx ;
s t r u c t vring_used_elem r ing [] ;

} ;

19

s t r u c t vr ing {
unsigned i n t num;

s t r u c t vring_desc ∗desc ;
s t r u c t vr ing_ava i l ∗ av a i l ;
s t r u c t vring_used ∗used ;

} ;

/∗ The standard layout f o r the r ing i s a cont inuous chunk o f memory which
∗ l o ok s l i k e t h i s . We assume num i s a power o f 2 .
∗
∗ s t r u c t vr ing {
∗ // The ac tua l d e s c r i p t o r s (16 bytes each)
∗ s t r u c t vring_desc desc [num] ;
∗
∗ // A r ing o f a v a i l a b l e d e s c r i p t o r heads with f r e e−running index .
∗ __u16 ava i l_ f l a g s ;
∗ __u16 avai l_idx ;
∗ __u16 av a i l a b l e [num] ;
∗
∗ // Padding to the next a l i g n boundary .
∗ char pad [] ;
∗
∗ // A r ing o f used d e s c r i p t o r heads with f r e e−running index .
∗ __u16 used_f lags ;
∗ __u16 used_idx ;
∗ s t r u c t vring_used_elem used [num] ;
∗ } ;
∗ Note : f o r v i r t i o PCI , a l i g n i s 4096 .
∗/
s t a t i c i n l i n e void vr ing_in i t (s t r u c t vr ing ∗vr , unsigned i n t num, void ∗p ,

unsigned long a l i g n)
{

vr−>num = num;
vr−>desc = p ;
vr−>ava i l = p + num∗ s i z e o f (s t r u c t vring_desc) ;
vr−>used = (void ∗) (((unsigned long)&vr−>ava i l−>r ing [num]

+ a l ign −1)
& ~(a l i g n − 1)) ;

}

s t a t i c i n l i n e unsigned vr ing_s i ze (unsigned i n t num, unsigned long a l i g n)
{

re turn ((s i z e o f (s t r u c t vring_desc)∗num + s i z e o f (uint16_t)∗(2+num)
+ a l i g n − 1) & ~(a l i g n − 1))

20

+ s i z e o f (uint16_t)∗2 + s i z e o f (s t r u c t vring_used_elem)∗num;
}
#end i f /∗ VIRTIO_RING_H ∗/

21

Appendix B: Reserved

Feature Bits

Currently there are three device-independent feature bits de�ned:

VIRTIO_F_NOTIFY_ON_EMPTY (24) Negotiating this feature indi-
cates that the driver wants an interrupt if the device runs out of available
descriptors on a virtqueue, even though interrupts are suppressed using
the VRING_AVAIL_F_NO_INTERRUPT �ag. An example of this is
the networking driver: it doesn't need to know every time a packet is trans-
mitted, but it does need to free the transmitted packets a �nite time after
they are transmitted. It can avoid using a timer if the device interrupts
it when all the packets are transmitted.

VIRTIO_F_RING_INDIRECT_DESC (28) Negotiating this feature in-
dicates that the driver can use descriptors with the VRING_DESC_F_INDIRECT
�ag set, as described in 2.3.3.

VIRTIO_F_BAD_FEATURE(30) This feature should never be negoti-
ated by the guest; doing so is an indication that the guest is faulty4

4An experimental virtio PCI driver contained in Linux version 2.6.25 had this problem,
and this feature bit can be used to detect it.

22

Appendix C: Network Device

The virtio network device is a virtual ethernet card, and is the most complex
of the devices supported so far by virtio. It has enhanced rapidly and demon-
strates clearly how support for new features should be added to an existing
device. Empty bu�ers are placed in one virtqueue for receiving packets, and
outgoing packets are enqueued into another for transmission in that order. A
third command queue is used to control advanced �ltering features.

Con�guration

Subsystem Device ID 1

Virtqueues 0:receiveq. 1:transmitq. 2:controlq5

Feature bits

VIRTIO_NET_F_CSUM (0) Device handles packets with partial
checksum

VIRTIO_NET_F_GUEST_CSUM (1) Guest handles packets with
partial checksum

VIRTIO_NET_F_MAC (5) Device has given MAC address.

VIRTIO_NET_F_GSO (6) (Deprecated) device handles packets with
any GSO type.6

VIRTIO_NET_F_GUEST_TSO4 (7) Guest can receive TSOv4.

VIRTIO_NET_F_GUEST_TSO6 (8) Guest can receive TSOv6.

VIRTIO_NET_F_GUEST_ECN (9) Guest can receive TSO with
ECN.

VIRTIO_NET_F_GUEST_UFO (10) Guest can receive UFO.

VIRTIO_NET_F_HOST_TSO4 (11) Device can receive TSOv4.

5Only if VIRTIO_NET_F_CTRL_VQ set
6It was supposed to indicate segmentation o�oad support, but upon further investigation

it became clear that multiple bits were required.

23

VIRTIO_NET_F_HOST_TSO6 (12) Device can receive TSOv6.

VIRTIO_NET_F_HOST_ECN (13) Device can receive TSO with
ECN.

VIRTIO_NET_F_HOST_UFO (14) Device can receive UFO.

VIRTIO_NET_F_MRG_RXBUF (15) Guest can merge receive
bu�ers.

VIRTIO_NET_F_STATUS (16) Con�guration status �eld is avail-
able.

VIRTIO_NET_F_CTRL_VQ (17) Control channel is available.

VIRTIO_NET_F_CTRL_RX (18) Control channel RX mode sup-
port.

VIRTIO_NET_F_CTRL_VLAN (19) Control channel VLAN �l-
tering.

Device con�guration layout Two con�guration �elds are currently de�ned.
The mac address �eld always exists (though is only valid if VIRTIO_NET_F_MAC
is set), and the status �eld only exists if VIRTIO_NET_F_STATUS is
set. Only one bit is currently de�ned for the status �eld: VIRTIO_NET_S_LINK_UP.

#de f i n e VIRTIO_NET_S_LINK_UP 1

s t r u c t v i r t i o_net_con f i g {
u8 mac [6] ;
u16 s t a tu s ;

} ;

Device Initialization

1. The initialization routine should identify the receive and transmission
virtqueues.

2. If the VIRTIO_NET_F_MAC feature bit is set, the con�guration space
�mac� entry indicates the �physical� address of the the network card, oth-
erwise a private MAC address should be assigned. All guests are expected
to negotiate this feature if it is set.

3. If the VIRTIO_NET_F_CTRL_VQ feature bit is negotiated, identify
the control virtqueue.

4. If the VIRTIO_NET_F_STATUS feature bit is negotiated, the link sta-
tus can be read from the bottom bit of the �status� con�g �eld. Otherwise,
the link should be assumed active.

24

5. The receive virtqueue should be �lled with receive bu�ers. This is de-
scribed in detail below in �Setting Up Receive Bu�ers�.

6. A driver can indicate that it will generate checksumless packets by nego-
tating the VIRTIO_NET_F_CSUM feature. This �checksum o�oad� is
a common feature on modern network cards.

7. If that feature is negotiated, a driver can use TCP or UDP segmentation
o�oad by negotiating the VIRTIO_NET_F_HOST_TSO4 (IPv4 TCP),
VIRTIO_NET_F_HOST_TSO6 (IPv6 TCP) and VIRTIO_NET_F_HOST_UFO
(UDP fragmentation) features. It should not send TCP packets requiring
segmentation o�oad which have the Explicit Congestion Noti�cation bit
set, unless the VIRTIO_NET_F_HOST_ECN feature is negotiated.7

8. The converse features are also available: a driver can save the virtual de-
vice some work by negotiating these features.8 The VIRTIO_NET_F_GUEST_CSUM
feature indicates that partially checksummed packets can be received,
and if it can do that then the VIRTIO_NET_F_GUEST_TSO4, VIR-
TIO_NET_F_GUEST_TSO6, VIRTIO_NET_F_GUEST_UFO and
VIRTIO_NET_F_GUEST_ECN are the input equivalents of the fea-
tures described above. See �Receiving Packets� below.

Device Operation

Packets are transmitted by placing them in the transmitq, and bu�ers for in-
coming packets are placed in the receiveq. In each case, the packet itself is
preceeded by a header:

s t r u c t virt io_net_hdr {
#de f i n e VIRTIO_NET_HDR_F_NEEDS_CSUM 1

u8 f l a g s ;
#de f i n e VIRTIO_NET_HDR_GSO_NONE 0
#de f i n e VIRTIO_NET_HDR_GSO_TCPV4 1
#de f i n e VIRTIO_NET_HDR_GSO_UDP 3
#de f i n e VIRTIO_NET_HDR_GSO_TCPV6 4
#de f i n e VIRTIO_NET_HDR_GSO_ECN 0x80

u8 gso_type ;
u16 hdr_len ;
u16 gso_size ;
u16 csum_start ;
u16 csum_offset ;

/∗ Only i f VIRTIO_NET_F_MRG_RXBUF: ∗/
u16 num_buffers

7This is a common restriction in real, older network cards.
8For example, a network packet transported between two guests on the same system may

not require checksumming at all, nor segmentation, if both guests are amenable.

25

} ;

The controlq is used to control device features such as �ltering.

Packet Transmission

Transmitting a single packet is simple, but varies depending on the di�erent
features the driver negotiated.

1. If the driver negotiated VIRTIO_NET_F_CSUM, and the packet has
not been fully checksummed, then the virtio_net_hdr's �elds are set as
follows. Otherwise, the packet must be fully checksummed, and �ags is
zero.

• �ags has the VIRTIO_NET_HDR_F_NEEDS_CSUM set,

• csum_start is set to the o�set within the packet to begin checksum-
ming, and

• csum_o�set indicates how many bytes after the csum_start the new
(16 bit ones' complement) checksum should be placed.9

2. If the driver negotiated VIRTIO_NET_F_HOST_TSO4, TSO6 or UFO,
and the packet requires TCP segmentation or UDP fragmentation, then
the �gso_type� �eld is set to VIRTIO_NET_HDR_GSO_TCPV4, TCPV6
or UDP. (Otherwise, it is set to VIRTIO_NET_HDR_GSO_NONE). In
this case, packets larger than 1514 bytes can be transmitted: the metadata
indicates how to replicate the packet header to cut it into smaller packets.
The other gso �elds are set:

• hdr_len is a hint to the device as to how much of the header needs
to be kept to copy into each packet, usually set to the length of the
headers, including the transport header.10

• gso_size is the size of the packet beyond that header (ie. MSS).

• If the driver negotiated the VIRTIO_NET_F_HOST_ECN feature,
the VIRTIO_NET_HDR_GSO_ECN bit may be set in �gso_type�
as well, indicating that the TCP packet has the ECN bit set.11

9For example, consider a partially checksummed TCP (IPv4) packet. It will have a 14 byte
ethernet header and 20 byte IP header followed by the TCP header (with the TCP checksum
�eld 16 bytes into that header). csum_start will be 14+20 = 34 (the TCP checksum includes
the header), and csum_o�set will be 16. The value in the TCP checksum �eld will be the
sum of the TCP pseudo header, so that replacing it by the ones' complement checksum of the
TCP header and body will give the correct result.

10Due to various bugs in implementations, this �eld is not useful as a guarantee of the
transport header size.

11This case is not handled by some older hardware, so is called out speci�cally in the
protocol.

26

3. If the driver negotiated the VIRTIO_NET_F_MRG_RXBUF feature,
the num_bu�ers �eld is set to zero.

4. The header and packet are added as one output bu�er to the transmitq,
and the device is noti�ed of the new entry (see 2.4.1.4).12

Packet Transmission Interrupt

Often a driver will suppress transmission interrupts using the VRING_AVAIL_F_NO_INTERRUPT
�ag (see 2.4.2) and check for used packets in the transmit path of following pack-
ets. However, it will still receive interrupts if the VIRTIO_F_NOTIFY_ON_EMPTY
feature is negotiated, indicating that the transmission queue is completely emp-
tied.

The normal behavior in this interrupt handler is to retrieve and new descriptors
from the used ring and free the corresponding headers and packets.

Setting Up Receive Bu�ers

It is generally a good idea to keep the receive virtqueue as fully populated as
possible: if it runs out, network performance will su�er.

If the VIRTIO_NET_F_GUEST_TSO4, VIRTIO_NET_F_GUEST_TSO6
or VIRTIO_NET_F_GUEST_UFO features are used, the Guest will need to
accept packets of up to 65550 bytes long (the maximum size of a TCP or UDP
packet, plus the 14 byte ethernet header), otherwise 1514 bytes. So unless
VIRTIO_NET_F_MRG_RXBUF is negotiated, every bu�er in the receive
queue needs to be at least this length 13.

If VIRTIO_NET_F_MRG_RXBUF is negotiated, each bu�er must be at least
the size of the struct virtio_net_hdr.

Packet Receive Interrupt

When a packet is copied into a bu�er in the receiveq, the optimal path is to
disable further interrupts for the receiveq (see 2.4.2) and process packets until
no more are found, then re-enable them.

Processing packet involves:

1. If the driver negotiated the VIRTIO_NET_F_MRG_RXBUF feature,
then the �num_bu�ers� �eld indicates how many descriptors this packet

12Note that the header will be two bytes longer for the VIRTIO_NET_F_MRG_RXBUF
case.

13Obviously each one can be split across multiple descriptor elements.

27

is spread over (including this one). This allows receipt of large packets
without having to allocate large bu�ers. In this case, there will be at
least �num_bu�ers� in the used ring, and they should be chained together
to form a single packet. The other bu�ers will not begin with a struct

virtio_net_hdr.

2. If the VIRTIO_NET_F_MRG_RXBUF feature was not negotiated, or
the �num_bu�ers� �eld is one, then the entire packet will be contained
within this bu�er, immediately following the struct virtio_net_hdr.

3. If the VIRTIO_NET_F_GUEST_CSUM feature was negotiated, the
VIRTIO_NET_HDR_F_NEEDS_CSUM bit in the ��ags� �eld may be
set: if so, the checksum on the packet is incomplete and the �csum_start�
and �csum_o�set� �elds indicate how to calculate it (see 1).

4. If the VIRTIO_NET_F_GUEST_TSO4, TSO6 or UFO options were ne-
gotiated, then the �gso_type� may be something other than VIRTIO_NET_HDR_GSO_NONE,
and the �gso_size� �eld indicates the desired MSS (see 2).Control Virtqueue

The driver uses the control virtqueue (if VIRTIO_NET_F_VTRL_VQ is ne-
gotiated) to send commands to manipulate various features of the device which
would not easily map into the con�guration space.

All commands are of the following form:

s t r u c t v i r t i o_ne t_ct r l {
u8 c l a s s ;
u8 command ;
u8 command−s p e c i f i c −data [] ;
u8 ack ;

} ;

/∗ ack va lue s ∗/
#de f i n e VIRTIO_NET_OK 0
#de f i n e VIRTIO_NET_ERR 1

The class, command and command-speci�c-data are set by the driver, and the
device sets the ack byte. There is little it can do except issue a diagnostic if the
ack byte is not VIRTIO_NET_OK.

Packet Receive Filtering

If the VIRTIO_NET_F_CTRL_RX feature is negotiated, the driver can send
control commands for promiscuous mode, multicast receiving, and �ltering of
MAC addresses.

Note that in general, these commands are best-e�ort: unwanted packets may
still arrive.

28

Setting Promiscuous Mode

#de f i n e VIRTIO_NET_CTRL_RX 0
#de f i n e VIRTIO_NET_CTRL_RX_PROMISC 0
#de f i n e VIRTIO_NET_CTRL_RX_ALLMULTI 1

The class VIRTIO_NET_CTRL_RX has two commands: VIRTIO_NET_CTRL_RX_PROMISC
turns promiscuous mode on and o�, and VIRTIO_NET_CTRL_RX_ALLMULTI
turns all-multicast receive on and o�. The command-speci�c-data is one byte
containing 0 (o�) or 1 (on).

Setting MAC Address Filtering

s t r u c t virt io_net_ctrl_mac {
u32 e n t r i e s ;
u8 macs [e n t r i e s] [ETH_ALEN] ;

} ;

#de f i n e VIRTIO_NET_CTRL_MAC 1
#de f i n e VIRTIO_NET_CTRL_MAC_TABLE_SET 0

The device can �lter incoming packets by any number of destination MAC ad-
dresses.14 This table is set using the class VIRTIO_NET_CTRL_MAC and
the command VIRTIO_NET_CTRL_MAC_TABLE_SET. The command-
speci�c-data is two variable length tables of 6-byte MAC addresses. The �rst
table contains unicast addresses, and the second contains multicast addresses.

VLAN Filtering

If the driver negotiates the VIRTION_NET_F_CTRL_VLAN feature, it can
control a VLAN �lter table in the device.

#de f i n e VIRTIO_NET_CTRL_VLAN 2
#de f i n e VIRTIO_NET_CTRL_VLAN_ADD 0
#de f i n e VIRTIO_NET_CTRL_VLAN_DEL 1

Both the VIRTIO_NET_CTRL_VLAN_ADD and VIRTIO_NET_CTRL_VLAN_DEL
command take a 16-bit VLAN id as the command-speci�c-data.

14Since there are no guarentees, it can use a hash �lter orsilently switch to allmulti or
promiscuous mode if it is given too many addresses.

29

Appendix D: Block Device

The virtio block device is a simple virtual block device (ie. disk). Read and
write requests (and other exotic requests) are placed in the queue, and serviced
(probably out of order) by the device except where noted.

Con�guration

Subsystem Device ID 2

Virtqueues 0:requestq.

Feature bits

VIRTIO_BLK_F_BARRIER (0) Host supports request barriers.

VIRTIO_BLK_F_SIZE_MAX (1) Maximum size of any single seg-
ment is in �size_max�.

VIRTIO_BLK_F_SEG_MAX (2) Maximum number of segments
in a request is in �seg_max�.

VIRTIO_BLK_F_GEOMETRY (4) Disk-style geometry speci�ed
in �geometry�.

VIRTIO_BLK_F_RO (5) Device is read-only.

VIRTIO_BLK_F_BLK_SIZE (6) Block size of disk is in �blk_size�.

VIRTIO_BLK_F_SCSI (7) Device supports scsi packet commands.

VIRTIO_BLK_F_FLUSH (9) Cache �ush command support.

VIRTIO_BLK_F_SECTOR_MAX (10) Maximum total sectors in
an I/O.

Device con�guration layout The capacity of the device (expressed in 512-
byte sectors) is always present. The availability of the others all depend
on various feature bits as indicated above.

30

s t r u c t v i r t i o_b lk_con f i g {
u64 capac i ty ;
u32 size_max ;
u32 seg_max ;
s t r u c t virt io_blk_geometry {

u16 c y l i n d e r s ;
u8 heads ;
u8 s e c t o r s ;

} geometry ;
u32 b lk_s ize ;
u32 sectors_max ;

} ;

Device Initialization

1. The device size should be read from the �capacity� con�guration �eld. No
requests should be submitted which goes beyond this limit.

2. If the VIRTIO_BLK_F_BLK_SIZE feature is negotiated, the blk_size
�eld can be read to determine the optimal sector size for the driver to use.
This does not e�ect the units used in the protocol (always 512 bytes), but
awareness of the correct value can e�ect performance.

3. If the VIRTIO_BLK_F_RO feature is set by the device, any write re-
quests will fail.

4. If the VIRTIO_BLK_F_SECTOR_MAX feature is negotiated, the sec-
tors_max �eld should be read to determine the maximum I/O size for
the driver to use. No requests should be submitted which go beyond this
limit.

Device Operation

The driver queues requests to the virtqueue, and they are used by the device
(not necessarily in order). Each request is of form:

s t r u c t v i r t io_blk_req {

u32 type ;
u32 i o p r i o ;
u64 s e c t o r ;
char data [] [5 1 2] ;
u8 s t a tu s ;

} ;

31

If the device has VIRTIO_BLK_F_SCSI feature, it can also support scsi packet
command requests, each of these requests is of form:

s t r u c t v i r t io_scs i_pc_req {
u32 type ;
u32 i o p r i o ;
u64 s e c t o r ;

char cmd [] ;
char data [] [5 1 2] ;

#de f i n e SCSI_SENSE_BUFFERSIZE 96
u8 sense [SCSI_SENSE_BUFFERSIZE] ;
u32 e r r o r s ;
u32 data_len ;
u32 sense_len ;
u32 r e s i d u a l ;

u8 s t a tu s ;
} ;

The type of the request is either a read (VIRTIO_BLK_T_IN), a write (VIR-
TIO_BLK_T_OUT), a scsi packet command (VIRTIO_BLK_T_SCSI_CMD
or VIRTIO_BLK_T_SCSI_CMD_OUT15) or a �ush (VIRTIO_BLK_T_FLUSH
or VIRTIO_BLK_T_FLUSH_OUT16). If the device has VIRTIO_BLK_F_BARRIER
feature the high bit (VIRTIO_BLK_T_BARRIER) indicates that this request
acts as a barrier and that all preceeding requests must be complete before this
one, and all following requests must not be started until this is complete. Note
that a barrier does not �ush caches in the underlying backend device in host,
and thus does not serve as data consistency guarantee. Driver must use FLUSH
request to �ush the host cache.

#de f i n e VIRTIO_BLK_T_IN 0
#de f i n e VIRTIO_BLK_T_OUT 1
#de f i n e VIRTIO_BLK_T_SCSI_CMD 2
#de f i n e VIRTIO_BLK_T_SCSI_CMD_OUT 3
#de f i n e VIRTIO_BLK_T_FLUSH 4
#de f i n e VIRTIO_BLK_T_FLUSH_OUT 5
#de f i n e VIRTIO_BLK_T_BARRIER 0x80000000

The ioprio �eld is a hint about the relative priorities of requests to the device:
higher numbers indicate more important requests.

The sector number indicates the o�set (multiplied by 512) where the read or
write is to occur. This �eld is unused and set to 0 for scsi packet commands
and for �ush commands.

15the SCSI_CMD and SCSI_CMD_OUT types are equivalent, the device does not distin-
guish between them

16the FLUSH and FLUSH_OUT types are equivalent, the device does not distinguish be-
tween them

32

The cmd �eld is only present for scsi packet command requests, and indicates
the command to perform. This �eld must reside in a single, separate read-only
bu�er; command length can be derived from the length of this bu�er.

Note that these �rst three (four for scsi packet commands) �elds are always
read-only: the data �eld is either read-only or write-only, depending on the
request. The size of the read or write can be derived from the total size of the
request bu�ers.

The sense �eld is only present for scsi packet command requests, and indicates
the bu�er for scsi sense data.

The data_len �eld is only present for scsi packet command requests, this �eld
is deprecated, and should be ignored by the driver. Historically, devices copied
data length there.

The sense_len �eld is only present for scsi packet command requests and indi-
cates the number of bytes actually written to the sense bu�er.

The residual �eld is only present for scsi packet command requests and indicates
the residual size, calculated as data length - number of bytes actually transferred.

The �nal status byte is written by the device: either VIRTIO_BLK_S_OK for
success, VIRTIO_BLK_S_IOERR for host or guest error or VIRTIO_BLK_S_UNSUPP
for a request unsupported by host:

#de f i n e VIRTIO_BLK_S_OK 0
#de f i n e VIRTIO_BLK_S_IOERR 1
#de f i n e VIRTIO_BLK_S_UNSUPP 2

Historically, devices assumed that the �elds type, ioprio and sector reside in
a single, separate read-only bu�er; the �elds errors, data_len, sense_len and
residual reside in a single, separate write-only bu�er; the sense �eld in a separate
write-only bu�er of size 96 bytes, by itself; the �elds errors, data_len, sense_len
and residual in a single write-only bu�er; and the status �eld is a separate read-
only bu�er of size 1 byte, by itself.

33

Appendix E: Console Device

The virtio console device is a simple device for data input and output. A
device may have one or more ports. Each port has a pair of input and output
virtqueues. Moreover, a device has a pair of control IO virtqueues. The control
virtqueues are used to communicate information between the device and the
driver about ports being opened and closed on either side of the connection,
indication from the host about whether a particular port is a console port,
adding new ports, port hot-plug/unplug, etc., and indication from the guest
about whether a port or a device was successfully added, port open/close, etc..
For data IO, one or more empty bu�ers are placed in the receive queue for
incoming data and outgoing characters are placed in the transmit queue.

Con�guration

Subsystem Device ID 3

Virtqueues 0:receiveq(port0). 1:transmitq(port0), 2:control receiveq17, 3:con-
trol transmitq, 4:receiveq(port1), 5:transmitq(port1), ...

Feature bits

VIRTIO_CONSOLE_F_SIZE (0) Con�guration cols and rows �elds
are valid.

VIRTIO_CONSOLE_F_MULTIPORT(1) Device has support for
multiple ports; con�guration �elds nr_ports and max_nr_ports are
valid and control virtqueues will be used.

Device con�guration layout The size of the console is supplied in the con-
�guration space if the VIRTIO_CONSOLE_F_SIZE feature is set. Fur-
thermore, if the VIRTIO_CONSOLE_F_MULTIPORT feature is set,
the maximum number of ports supported by the device can be fetched.

17Ports 2 onwards only if VIRTIO_CONSOLE_F_MULTIPORT is set

34

s t r u c t v i r t i o_conso l e_con f i g {
u16 c o l s ;
u16 rows ;

u32 max_nr_ports ;
} ;

Device Initialization

1. If the VIRTIO_CONSOLE_F_SIZE feature is negotiated, the driver can
read the console dimensions from the con�guration �elds.

2. If the VIRTIO_CONSOLE_F_MULTIPORT feature is negotiated, the
driver can spawn multiple ports, not all of which may be attached to a con-
sole. Some could be generic ports. In this case, the control virtqueues are
enabled and according to the max_nr_ports con�guration-space value,
the appropriate number of virtqueues are created. A control message in-
dicating the driver is ready is sent to the host. The host can then send
control messages for adding new ports to the device. After creating and
initializing each port, a VIRTIO_CONSOLE_PORT_READY control
message is sent to the host for that port so the host can let us know of
any additional con�guration options set for that port.

3. The receiveq for each port is populated with one or more receive bu�ers.

Device Operation

1. For output, a bu�er containing the characters is placed in the port's trans-
mitq.18

2. When a bu�er is used in the receiveq (signalled by an interrupt), the
contents is the input to the port associated with the virtqueue for which
the noti�cation was received.

3. If the driver negotiated the VIRTIO_CONSOLE_F_SIZE feature, a con-
�guration change interrupt may occur. The updated size can be read from
the con�guration �elds.

18Because this is high importance and low bandwidth, the current Linux implementation
polls for the bu�er to be used, rather than waiting for an interrupt, simplifying the implemen-
tation signi�cantly. However, for generic serial ports with the O_NONBLOCK �ag set, the
polling limitation is relaxed and the consumed bu�ers are freed upon the next write or poll
call or when a port is closed or hot-unplugged.

35

4. If the driver negotiated the VIRTIO_CONSOLE_F_MULTIPORT fea-
ture, active ports are announced by the host using the VIRTIO_CONSOLE_PORT_ADD
control message. The same message is used for port hot-plug as well.

5. If the host speci�ed a port `name', a sysfs attribute is created with the
name �lled in, so that udev rules can be written that can create a symlink
from the port's name to the char device for port discovery by applications
in the guest.

6. Changes to ports' state are e�ected by control messages. Appropriate
action is taken on the port indicated in the control message. The layout
of the structure of the control bu�er and the events associated are:

s t r u c t v i r t i o_conso l e_cont ro l {
uint32_t id ; /∗ Port number ∗/
uint16_t event ; /∗ The kind o f c on t r o l event ∗/
uint16_t value ; /∗ Extra in fo rmat ion f o r the event ∗/

} ;

/∗ Some events f o r the i n t e r n a l messages (c on t r o l packets) ∗/

#de f i n e VIRTIO_CONSOLE_DEVICE_READY 0
#de f i n e VIRTIO_CONSOLE_PORT_ADD 1
#de f i n e VIRTIO_CONSOLE_PORT_REMOVE 2
#de f i n e VIRTIO_CONSOLE_PORT_READY 3
#de f i n e VIRTIO_CONSOLE_CONSOLE_PORT 4
#de f i n e VIRTIO_CONSOLE_RESIZE 5
#de f i n e VIRTIO_CONSOLE_PORT_OPEN 6
#de f i n e VIRTIO_CONSOLE_PORT_NAME 7

36

Appendix F: Entropy Device

The virtio entropy device supplies high-quality randomness for guest use.

Con�guration

Subsystem Device ID 4

Virtqueues 0:requestq.

Feature bits None currently de�ned

Device con�guration layout None currently de�ned.

Device Initialization

1. The virtqueue is initialized

Device Operation

When the driver requires random bytes, it places the descriptor of one or more
bu�ers in the queue. It will be completely �lled by random data by the device.

37

Appendix G: Memory

Balloon Device

The virtio memory balloon device is a primitive device for managing guest
memory: the device asks for a certain amount of memory, and the guest supplies
it (or withdraws it, if the device has more than it asks for). This allows the
guest to adapt to changes in allowance of underlying physical memory. If the
feature is negotiated, the device can also be used to communicate guest memory
statistics to the host.

Con�guration

Subsystem Device ID 5

Virtqueues 0:in�ateq. 1:de�ateq. 2:statsq.19

Feature bits

VIRTIO_BALLOON_F_MUST_TELL_HOST (0) Host must be
told before pages from the balloon are used.

VIRTIO_BALLOON_F_STATS_VQ (1) A virtqueue for report-
ing guest memory statistics is present.

Device con�guration layout Both �elds of this con�guration are always avail-
able. Note that they are little endian, despite convention that device �elds
are guest endian:

s t r u c t v i r t i o_conso l e_con f i g {
u32 num_pages ;
u32 ac tua l ;

} ;

19Only if VIRTIO_BALLON_F_STATS_VQ set

38

Device Initialization

1. The in�ate and de�ate virtqueues are identi�ed.

2. If the VIRTIO_BALLOON_F_STATS_VQ feature bit is negotiated:

(a) Identify the stats virtqueue.

(b) Add one empty bu�er to the stats virtqueue and notify the host.

Device operation begins immediately.

Device Operation

Memory Ballooning The device is driven by the receipt of a con�guration
change interrupt.

1. The �num_pages� con�guration �eld is examined. If this is greater than
the �actual� number of pages, memory must be given to the balloon. If
it is less than the �actual� number of pages, memory may be taken back
from the balloon for general use.

2. To supply memory to the balloon (aka. in�ate):

(a) The driver constructs an array of addresses of unused memory pages.
These addresses are divided by 409620 and the descriptor describing
the resulting 32-bit array is added to the in�ateq.

3. To remove memory from the balloon (aka. de�ate):

(a) The driver constructs an array of addresses of memory pages it has
previously given to the balloon, as described above. This descriptor
is added to the de�ateq.

(b) If the VIRTIO_BALLOON_F_MUST_TELL_HOST feature is set,
the guest may not use these requested pages until that descriptor in
the de�ateq has been used by the device.

(c) Otherwise, the guest may begin to re-use pages previously given to
the balloon before the device has acknowledged their withdrawl. 21

4. In either case, once the device has completed the in�ation or de�ation,
the �actual� �eld of the con�guration should be updated to re�ect the
new number of pages in the balloon.22

20This is historical, and independent of the guest page size
21In this case, de�ation advice is merely a courtesy
22As updates to con�guration space are not atomic, this �eld isn't particularly reliable, but

can be used to diagnose buggy guests.

39

Memory Statistics

The stats virtqueue is atypical because communication is driven by the device
(not the driver). The channel becomes active at driver initialization time when
the driver adds an empty bu�er and noti�es the device. A request for memory
statistics proceeds as follows:

1. The device pushes the bu�er onto the used ring and sends an interrupt.

2. The driver pops the used bu�er and discards it.

3. The driver collects memory statistics and writes them into a new bu�er.

4. The driver adds the bu�er to the virtqueue and noti�es the device.

5. The device pops the bu�er (retaining it to initiate a subsequent request)
and consumes the statistics.

Memory Statistics Format Each statistic consists of a 16 bit tag and a 64
bit value. Both quantities are represented in the native endian of the
guest. All statistics are optional and the driver may choose which ones
to supply. To guarantee backwards compatibility, unsupported statistics
should be omitted.

s t r u c t v i r t i o_ba l l oon_sta t {
#de f i n e VIRTIO_BALLOON_S_SWAP_IN 0
#de f i n e VIRTIO_BALLOON_S_SWAP_OUT 1
#de f i n e VIRTIO_BALLOON_S_MAJFLT 2
#de f i n e VIRTIO_BALLOON_S_MINFLT 3
#de f i n e VIRTIO_BALLOON_S_MEMFREE 4
#de f i n e VIRTIO_BALLOON_S_MEMTOT 5

u16 tag ;
u64 va l ;

} __attribute__ ((packed)) ;

Tags

VIRTIO_BALLOON_S_SWAP_IN The amount of memory that has
been swapped in (in bytes).

VIRTIO_BALLOON_S_SWAP_OUT The amount of memory that has
been swapped out to disk (in bytes).

VIRTIO_BALLOON_S_MAJFLT The number of major page faults that
have occurred.

VIRTIO_BALLOON_S_MINFLT The number of minor page faults that
have occurred.

40

VIRTIO_BALLOON_S_MEMFREE The amount of memory not being
used for any purpose (in bytes).

VIRTIO_BALLOON_S_MEMTOT The total amount of memory avail-
able (in bytes).

41

