
 © 2005 IBM Corporation

IBM Linux Technology Center

Managing memory in variable sized chunks
Christopher Yeoh <cyeoh@au1.ibm.com>

 Linux.conf.au 2006

IBM Linux Technology Center

© 2005 IBM Corporation

Outline

 Current Linux/K42 memory management
 Fragmentation problems
 Proposed system
 K42 Architecture/Implementation
 Experiment results
 Future work

IBM Linux Technology Center

© 2005 IBM Corporation

Current OS memory management

 Physical memory split into frames
Typically 4Kbytes

 Applications work with virtual addresses
OS manages

• allocation of physical frames
• loading of frame contents
• virtual to physical address mapping

IBM Linux Technology Center

© 2005 IBM Corporation

Virtual memory

 Virtual to physical mapping must be very fast
Hardware support

• TLB
 Effect of caches degraded as memory sizes increase

Large pages increase effectiveness of caches
• requires physically contiguous memory

IBM Linux Technology Center

© 2005 IBM Corporation

Causes of fragmentation

 Page allocation
Memory allocated a frame at a time for a process or file

 Fragmentation builds up over time as processes allocate
memory and then exit

IBM Linux Technology Center

© 2005 IBM Corporation

Fragmentation

 Process B starts
≣







 Process C starts

IBM Linux Technology Center

© 2005 IBM Corporation

Fragmentation

 Process B exits
≣

≣

≣

≣

 Minimal fragmentation

IBM Linux Technology Center

© 2005 IBM Corporation

Problems with fragmentation

 Can't allocate large pages
 Some device drivers need physically contiguous memory
 More difficult to hotplug memory

virtual machines as well as real physical memory
 One solution

Reserved areas
• Fixed size
• Balancing pools

IBM Linux Technology Center

© 2005 IBM Corporation

Problems with Fragmentation
 Current Linux approach

3 zones
• user reclaimable
• kernel reclaimable
• kernel non reclaimable

Fall-back allocation when a zone is exhausted
Copy memory around in reclaimable areas when too

fragmented
 Some device drivers have to reserve contiguous physical

memory
Module loading can fail

IBM Linux Technology Center

© 2005 IBM Corporation

Proposed system

 Allocation of memory in chunks
Chunks allocated for processes/files

• allocation for process done from chunk
• when exhausted another chunk allocated

Chunks can be of variable size
 Allocate array of page descriptors which refer to a chunk

IBM Linux Technology Center

© 2005 IBM Corporation

Chunk allocation

IBM Linux Technology Center

© 2005 IBM Corporation

Chunk Allocation

IBM Linux Technology Center

© 2005 IBM Corporation

Chunk Allocation

IBM Linux Technology Center

© 2005 IBM Corporation

Chunk Allocation

IBM Linux Technology Center

© 2005 IBM Corporation

Chunk Allocation

IBM Linux Technology Center

© 2005 IBM Corporation

Chunk Allocation

IBM Linux Technology Center

© 2005 IBM Corporation

Chunk Allocation

IBM Linux Technology Center

© 2005 IBM Corporation

Chunk Allocation

IBM Linux Technology Center

© 2005 IBM Corporation

Chunk Allocation

IBM Linux Technology Center

© 2005 IBM Corporation

Pros/Cons

 Advantages
Naturally reduces fragmentation
Naturally scalable
Cache friendlier data structures
Operate on groups of pages
No need to continuously initialise/free page descriptor objects
Increase potential to promote to large pages

 Disadvantages
don't always allocate “hot page”

• maybe doesn't matter on PPC (dcbz)

IBM Linux Technology Center

© 2005 IBM Corporation

What is K42

 Open source research kernel (64 bit, cache coherent
systems)

 Focus on performance, scalability, customizability,
maintainability

 Supports Linux API/ABI
 Uses Linux device drivers, filesystems, ...
 Userspace servers (NFS, socket, pipe server)

Application level libraries
 Pageable kernel data, Userspace thread scheduling, ...

IBM Linux Technology Center

© 2005 IBM Corporation

Why K42?

 Designed for experimentation/prototyping
OO design – easy to add alternative implementations
Supports Linux API/ABI (64-bit PowerPC)
Allocation occurs through per process object
Has infrastructure for experimentation

IBM Linux Technology Center

© 2005 IBM Corporation

K42 Memory Management System

IBM Linux Technology Center

© 2005 IBM Corporation

K42 Memory allocation

• allocations
• page allocator, root rep, pmleaf
• caching of pages in PMRoot and PMRoot reps
• freeing through same places

• doesn't have to be from original object

IBM Linux Technology Center

© 2005 IBM Corporation

Implementation in K42

 Page Descriptor Array (PDA) Header
Page size, Array Size, Chunk start address
Bitmap of free pages

 PDA header and chunk allocated separately
 allocPage – returns address and pointer to PDA

Page descriptors have a field added to store PDA pointer
deallocPage removed – frees done directly to PDA

 Under memory pressure fully freed PDAs are freed back to
page allocator

can re-use partially populated PDAs

IBM Linux Technology Center

© 2005 IBM Corporation

K42 PDA memory allocation

IBM Linux Technology Center

© 2005 IBM Corporation

Experimental results

 Very preliminary
Implementation still under development
Still debugging/optimising

 Fixed (per boot) size chunks

IBM Linux Technology Center

© 2005 IBM Corporation

Performance results

 Performance
SDET

• “system” benchmark
• commonly used with scalability testing

 0.5% degradation UP
 Large degradation for SMP

have not optimised for SMP yet
some obvious places to fix

IBM Linux Technology Center

© 2005 IBM Corporation

Fragmentation definition

 Definition of fragmentation
Measure amount of free memory
For a given page size, calculate number of pages that you

should be able to allocate
For a given page size, calculate number of pages you can

allocate

FragmentationPageSize=1−
Actual allocate

Theoretical allocate
∗100

IBM Linux Technology Center

© 2005 IBM Corporation

Example
≣

≣

≣

 Each block is 4kb
 Free memory: 28kb
 For 8kb pages

theoretical – 3 x 8kb pages
actual – 2 x 8kb pages
33% fragmentation

IBM Linux Technology Center

© 2005 IBM Corporation

Fragmentation results

 Test load
Long lived processes

• small allocations/deallocations
 Short lived processes (forked from long lived ones)

 Simple simulation of web server
 Modified kernel to dump bitmap of all pages in memory

marking free/used state

IBM Linux Technology Center

© 2005 IBM Corporation

Fragmentation results

 Table of fragmentation vs page size
 Reduced fragmentation for page size <= chunk size
 Increased fragmentation for page size > chunk size

Fragmentation % Fragmentation
Page Size (kb) Normal PDA (256kb)

4 0 0
8 1.3 0.4
16 3.5 1
32 7.3 1.3
64 11.8 1.6

128 16.1 2.1
256 17 2.9
512 17.3 64

IBM Linux Technology Center

© 2005 IBM Corporation

Future work #1
 Further debugging/optimisations

SMP
 Move more bitmaps into page descriptor array

eg dirty pages
 Handling low memory conditions

Splitting of page descriptor arrays
Swapping out entire chunks

IBM Linux Technology Center

© 2005 IBM Corporation

Future work #2

 Variable sized chunks
tailor size of chunk to process (CPO)

 PDAs passed through to FCMs
 File allocations grouped (PMLeaf equivalent)
 Reverse mapping in PDAs to point to FCMs

paging/defragmentation
 Move technology into Linux

IBM Linux Technology Center

© 2005 IBM Corporation

Legal Statement
● This work represents the view of the author and does not

necessarily represent the view of IBM.
● PowerPC is a registered trademarks of International Business

Machines Corporation in the United States, other countries, or
both.

● Linux is a registered trademark of Linus Torvalds.
● Other company, product and service names may be trademarks

or service marks of others.

