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Introduction

The word amateur is based on the Latin words amator (alover) and amare (to
love). An amateur is someone who loves what he does, and pursuesit for the pleasure of
the act itself. These notes are intended for the pool player who enjoys playing the game,
and who enjoys understanding how things work using the language of physics. Thereis
probably very little pool playing technique discussed in this manuscript that will be new
to the experienced pool player, and likewise, thereis little physics that will be new to the
experienced physicist. However, there will be hopefully new pool technique for the
interested physicist and new physics for the interested pool player. The tone of the
presentation is not directed necessarily toward either the pool student or the physics
student, but rather toward the amateur who enjoys both. The physicsthat is used hereis
not derived from first principles; it is assumed that the reader is familiar with such ideas
as Newton’s laws of motion, center of mass transformations, moments of inertia, linear
and angular acceleration, geometry, trigonometry, and vector notation. Referenceto a
calculus-based introductory college level physics textbook should be sufficient to
understand fully any of the physics used or mentioned in thistext. The Feynman
Lectures on Physics (Val. 1) is one such text that the reader will find enjoyable.

Thisdiscussion isdivided into five sections. Section 1 discusses the equipment
(balls, tables, cue sticks, cuetip, cloth) and some of its associated properties (various
friction coefficients, forces, moments of inertia), section 2 discusses the concept of
natural roll, section 3 discusses the cue tip and cue ball impact, section 4 discusses
collisions between balls, and section 5 discusses the use of statistical methods. Each
section includes some general discussion and specific problems (along with their
solutions). Some exercises are also given along the way; it isintended for the reader to
experiment on a pool table with some of the techniques that have been discussed.



1. Properties of the Equipment

Pool, billiard, and snooker balls are uniform spheres of, usually, a phenolic resin
type of plastic. Older balls have been made of clay, ivory, wood, and other materials. On
coin-operated tables, the cue ball is sometimes larger and heavier than the other balls;
otherwise, all the ballsin a set are the same size and weight. Standard pool balls are
2%, in diameter, snooker balls are either of two sizes, 25" or 24", and carom
billiard balls are one of three sizes, 22%,", 234", or 2 /45". Tolerancesin all cases are
+0.005". Pool ballsweigh 5.5 to 60z, snooker ballsweigh 5 to 5.50z, and billiard balls
weigh 7 to 7.50z.

Problem 1.1: What is the volume of a pool ball in terms of its radius R?

Answer: In spherical coordinates, the volume of a sphereis given by
2nnt R
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000
where Risthe radius of the ball. Assuming that the ball is a perfect sphere, the minimum
radiusis Rmin=1.1225" and the maximum radius is Ryax=1.1275". The volume of a

standard pool ball is between %nRﬁﬂn =5.924in3=97.08cm3 and
£ RS 1 =6.004in3=98.39cm3,

Problem 1.2: In order to satisfy the size and weight limits, what is the density range of
the ball material in units of g/cm3?

Answer: The density is the mass divided by the volume, p=MA. The minimum massis
5.502(28.35¢9/02)=155.9g, and the maximum massis 6.002(28.35g/02)=170.1g. The
minimum density iS pmin=M mir/Vmax=1.559¢98.39cm3=1.58g/cm3 and the maximum
density is pmax=MmaxVimin =170.1¢97.08cm3=1.75g/cm3. For comparison, the density of
water at room termperature is 0.997g/cm3 , a saturated sucrose (table sugar) solution is
1.44g/cm3, a saturated cesium chloride solution is 1.89g/cm3, and the density of mercury
is 13.6g/cm3, so apool ball should easily sink in water, slowly sink in the sugar solution,
barely float in the cesium chloride solution, and easily float in mercury.

The inertiatensor of arigid body is defined as the elements of the 3 by 3 matrix
é u
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where the components of the vector r=(x,y,2) are the cartesian coordinates. For auniform
sphere, p(r)=p isaconstant for r<R and is the density of the ball material. The mass of

the ball is M = pV = §paR°.




Problem 1.3: Determine the inertiatensor for aball in terms of M and R.
Answer: Taking the moment of inertia about the x-axis gives

| = @(r)(zz +y)dv =, +5, =25,
It isinteresting to notice that the moment of inertia about the x-axis, for example as given
above, depends only on how the mass of the object is distributed along the z- and y-axes.
Some thoughtful reflection will reveal that, for the coordinate axes origin taken to be the
center of the sphere, the 2 integral Sz isthe same as the y2 integral Sy, so only one
integral really needs to be done as indicated in the last equality above. In fact,
Sx=Syy=S since for asphere, the choice of axisis completely arbitrary. Using
z=rcog(8), x =rsin(8)cos(p), and y=rsin(6)sin(¢) alows theseintegralsto be
written in polar coordinates. Taking S, for example gives

R 7 2n
Sz =p() r Gos2 0sinodo (Yl :p(;5l R5)(%)(2ﬂ) - 1MR?
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The moment of inertiaabout any axisistwicethisvaue, giving Iy =lyy =1, = % MR .

It may also be seen that the off-diagonal elements of the inertiatensor are all zero. This
means that any choice of orthogonal coordinate axes isformally equivalent to any other,
and any such choice corresponds to the principle axes. For other rigid bodies, the off-
diagonal elements are generally nonzero, and only a special choice of the coordinate axes
will result in adiagonal inertiatensor. Written as amatrix, the inertiatensor is

An important property of thisinertiatensor isthat its product with any vector  is simply

ascaling of that vector, the direction does not change: 1o = (% MRZ) .

The kinetic energy of aball consists of two parts, trandational and rotational. The
translational kinetic energy is given by T(Trans):l/zM\ﬂ, where V is the velocity of the
center of mass of the ball. The mass of the ball, M, is the proportionality constant
between the velocity squared and the energy. The rotational kinetic energy about a
principle axis is given by the similar equation T(rot)=1/! o2, where o is the angular
velocity, for example in radians per second. Therefore the moment of inertia, I, isthe
proportionality constant between the angular velocity squared and the rotational kinetic
energy. The most general equation for the rotational energy of arigid body is
T(Rot)zllgmxx», in which o isthe angular velocity about each axis, | isthe 3 by 3 inertia
tensor, and the dot implies the appropriate matrix-vector or vector-vector product. The
guantity L=l ® isthe rotational angular momentum about the center of mass, and the
simple form for I given above means that for a pool ball the angular momentum is aways




aligned with the angular rotation. The rotational energy may then be written as
T(Rot) = (% MRZ) 0 X = (—é MRZ)I(DIZ. The freedom of axes choice for a uniform sphere

will often allow the problem at hand to be simplified to only asingle rotation axis, in
which case the ssimple scalar equation may be used

When aforce is applied to arigid body, such asaball, the velocity of the center of
mass changes according to the equation F = MV, and the angular velocity changes
according to the equation r * F =1 . When asingle principle rotational axisis
considered, the latter equation reduces to the simpler rsin(0)|F| =1 o, where 6 isthe
angle between the vectorsr and F, with magnitudesr and |F| respectively. o isinthe
direction perpendicular to the plane defined by the two vectorsr and F, and aligned, by
convention, with the right-hand-rule (i.e. when the fingers of the right hand curl in the
direction that rotates r into F, then the thumb points aong the direction of positive w;
other analytic expressions for the vector cross product will also be used in this discussion,
but the right-hand-rule provides a useful and intuitive defintion.) The vector r points
from the center of mass of the ball to the point on the surface of the ball at which the
forceisapplied. Inthese equations, Vo %\ti isthe linear acceleration along each

coordinate axis and o °© %‘;—’ isthe angular acceleration around each coordinate axis. The

similarities in the rel ations between the force and the mass M for the linear accel eration
and between the force and the moment of inertial for the rotational acceleration are again
seen. Thersin(B) factor shows how the angular accel eration depends on the direction of
the force. When the force is applied directly toward the center of mass of the ball, then
the sin(B) factor is zero and there is no angular acceleration; it isonly when the forceis
applied in adirection askew from the center of the ball that angular acceleration occurs.

A forceisrequired to rub two objects together. If the two objects are pressed
together with anormal force Fy, and a sideways force of magnitude Fr causes the two
objects to sip against each other without accel eration, then the coefficient of dliding
friction is defined as p(giding=F#/FN. To agood approximation, the coefficient of
friction between two surfaces is a constant, independent of the forces and independent of
the speeds of the two dliding objects. A small coefficient of friction is associated with
slippery object pairs, and alarge coefficient of friction is associated with sticky object
pairs. Thereisalso astatic coefficient of friction. Static friction is defined in asimilar
manner to dliding friction, but it appliesto two surfaces that are at rest. For a given pair
of surfaces, the static coefficient of friction islarger than the diding coefficient, although
for some surface pairsthey are very closein value.

There are several frictional forces that are important in pool. Thefirst isthe
dliding friction of aball on the cloth, Fs. Fs={i(diding)W Where Wis the weight of the ball
(FN=W=Mg where g is the acceleration of gravity). Since the ball weight and the
coefficient of friction are constants for a given ball and for a given table, the frictional
force of adiding ball isaconstant. The magnitude of the frictional force does not depend



on the velocity of the ball or upon o for the ball aslong asthe ball is sliding on the cloth.
The direction of this force does depend on the ball velocity and o, and thiswill be
examined in more detail in the following discussions. If the ball is not sliding on the
cloth (e.g. the ball is at rest, or the ball isrolling smoothly without slipping on the cloth
surface), then there is no sliding frictional force.

It isinteresting to consider the nature of the cause of adliding frictional force. At
amicroscopic level, the atoms in the molecules of one surface are attracted to those of the
other surface. Asthe object slides forward, new interactions, or bonds, are formed in the
forward direction, maintained momentarily, and then broken as the individual atoms are
pulled apart. However, it isnot directly these bonds that cause the friction. Thereasonis
that the same kinetic energy islost in forming the bond asis gained back again when it
breaks, and there is no net change of energy due to the forming and breaking of these
bonds as the surfaces slide across each other. But for the small amount of time that the
individual atoms interact, vibrational energy of the surface moleculesistransferred to the
other moleculesin the bulk of the objects. (Energy isaso transferred in the opposite
direction, but at a much smaller rate; the net energy flow is from the surface atoms to the
bulk atoms, a consequence of the second law of thermodynamics.) The result of this
energy transfer isthat trandational kinetic energy istransformed into vibrations of the
molecules of the bulk materials, or in other words, into heat and sound. From this point
of view of aphysicist, it might be said that it is the heat and sound that cause the
frictional force; thisis somewhat the opposite of the layman’s point of view, namely, that
friction causes the heat.

Problem 1.4: A block slides down an inclined plane without acceleration; what is the
relation between L and the angle of the slope of the plane?

Answer: The downward force is the weight of the object W=Mg. The component of this
force normal to the plane surface is Fn=Wcos(a)) where o isthe angle of incline. The
component of the downward force tangent to the surface of the plane is Fi=Wsin(a). This
force is directed down the incline, accelerating the object, and it is opposed by the
frictional force which is directed uphill. Since the object is dliding without acceleration,
all of thistangential force is balanced exactly by the frictional force, Fs=-F;. The
coefficient of friction isthen given by u=F/Fn=tan(c;). Thisrelation between slope and
the coefficient of friction is so fundamental that it is sometimes taken as a de facto
defintion.

A dliding block provides a simple conceptual model for understanding several
other aspects of diding friction. Consider adliding block of massM on alevel surface
with adliding coefficient of friction u. The downward force of the block is the weight of
the block, W=Mg, and thisforce is exactly opposed by an upward force of the surface;
this means that the block does not accelerate in the vertical direction. The horizontal




force is constant in magnitude, |Fg|=uW=uMg and the direction of thisforce is opposite to
the velocity which istaken to define the positive direction. Thisfrictional force slows
down the sliding block according to the equation v =-ug wherethe minussignisdueto
the direction of the force. It isinteresting that this equation does not depend on the block
mass, several equations of motion in the following discussions will be similarly
independent of the ball masses. Integration over time gives V(t)=Vo-ugt where \jp is the
initial velocity at t=0. Of course, thisequation isvalid only aslong asthe block is
diding. Integration again over time gives the distance x as a function of time as
x=Vot-Yougt2 where the distance is measured from the starting point.

Since the block is slowing down, kinetic energy is not conserved in this process.
Thisis adissipative system, not a conservative system. How does the kinetic energy
depend on time and distance? Substitution of V(t) above gives

T = YoMV2 = YoM(V3 — 2Vougt + p2g22 )

=Tp — uMgx.

Kinetic energy islost as alinear function of the distance and a quadratic function of time.
When the block dlidesto rest, T=0, theinitial energy and total siding distance d are
simply related as To=uMgd. If theinitia energy of the block were doubled, then the
distance that the block slides before coming to rest would also double. However, if the
initial velocity were doubled, then the final distance would increase by afactor of four.
Note also that for agiven initial energy Ty, if the coefficient of friction were to increase,
then the total dliding distance must decrease, and if the coefficient of friction were to
decrease, then the total sliding distance must increase. A related quantity of interest isthe
power dissipation, defined as To %tI . From the quadratic time function, or using the

chainrule T = %%%—’t‘ , the power dissipation for asliding block is seen to be T:-uMgV.

The treatment of frictional forces for asliding block are relatively simple; the somewhat
more complicated situations for abilliard ball sliding on atable and for two colliding
billiard balls are treated in the following sections.

How can the coefficient of friction be measured? There are several possibilities,
depending on the equipment available with which to make measurements or on the data
available. (1) One method would be to attach a measuring scale to the block, and simply
measure the force required to slide the block on the surface without acceleration; this
force divided by the weight of the block would give directly the coefficient u. (2) If the
surface can be held at an arbitrary slope, then u can be determined asin P1.4. Thismay
not be always practical (for example if the surface is a heavy billiard table). (3) If the
velocity or the energy could be measured accurately at two pointsin agiven trgectory,
then the equation T=Tg-uMgx at these two points could be used to determine Tg and the
product uMg. An independent determination of the weight Mg would then allow u to be
determined. However, velocities are relatively difficult to measure, so this also may not
be practical. (4) Suppose that the block slides a distance d in time tq before coming to



rest. Thentheinitia velocity was Vo=ugtq. Substitution of thisinto the quadratic
distance equation gives p=d/(¥>gt4?). Of course, thisis not an exhaustive list of
possibilities, and many other schemes could be devised based on preparation of the initial
velocity or trgjectory measurements of various types.

A second force istherolling resistance of aball on the cloth. Thisisnot, strictly
speaking, adliding frictional force since it does not invlove sliding surfaces, but the
formal treatment of thisforce is similar to the above dliding frictional force. A detailed
examination of the forces involved in this situation will be postponed until the next
section. For the present discussion, thisrolling resistance will be modeled as a ball
rolling uphill on an inclined plane. Thisisaconservative model. The dissipative energy
loss of an actual hilliard ball is then considered to be analogous to the energy loss of the
model ball in the conservative gravity field. Because this model is a conservative system,
it is possible to determine the equations of motion of the ball without detailed
consideration of the forces (which may not be intuitively obvious for this situation).

For an incline of slope o, the height above the starting point is given by
h=s sin(cr), where sis the distance up the incline from the starting point. The potential
energy is then by given as afunction of s by U(s)=Mgh=sMgsin(c). Inthismodel itis
assumed that there is no energy dissipation through heat. Thetotal energy E=T+U isa
constant, so any kinetic energy lost by the ball istransferred to potential energy in the
gravity field. Thisgivesthe relation T(s)=Tg-sin(a)sMg, where To=E isthe initial energy
of therolling ball at the bottom of theincline. It is now seen that the kinetic energy for a
ball rolling on an incline obeys the same equation as for the sliding block, but with the
incline slope, corresponding to sin(a), assuming the role of the sliding coefficient of
friction of the block. However, in the case of arolling ball, the kinetic energy expression
is more complicated, and this, along with the examination of the associated forces, is
discussed in more detail in the following section. Using the chain rule expression, the
power dissipation for the ball rolling up an incline is given by T= % %% =-sin(o)MgV,

where V is determined by the speed parallel to theincline. If, for some reason, it were not
possible to measure the slope of the incline, it could be determined indirectly by
measuring the sin(a) factor in the above equations in the same manner that the sliding
coefficient of friction u can be measured for a sliding block.

The connection between an actual ball rolling on alevel table and this model
problem may be justified by considering the rolling ball at a microscopic level. The
nature of the effective frictional force arisesin part from the compression of the cloth
fibers asthe ball rolls past. Once compressed, they do not rebound immediately as the
ball passes; if they did, then there would be no energy lost in this manner by the rolling
ball. The energy lost by thisirreversible compression of the fibers slows the rolling ball.
Energy of therolling ball isaso lost to vibrations of the ball and table, and eventualy to
the increased temperature of the surroundings. Asthe ball rolls forward an infinitesimal
amount, it rolls also uphill on the cloth, losing a small amount of kinetic energy. But the



cloth cannot support the ball weight, so it compresses the fibers. Thistransfersthe
potential energy from the gravity field into the spring constants of these compressed
fibers. Asthe ball continuesto roll, the fibers remain compressed for asmall time, and
thistime lag prevents the potential energy stored in the fibers from being returned to the
ball kinetic energy. The horizontal distance that the ball rolls on the table can be
measured, but the effective height that it would have risen if the cloth fibers had not
compressed cannot be measured directly. Therefore, the effective slope sin(ar), which

may be associated with an effective rolling coefficient of friction u?rf;“mg), must be

determined indirectly.
Consider aball rolling adistance d on atablein timet before coming to a stop.

At thistime, an effective force is assumed of the form F,= u(erfz)”ing)Mg that opposes the

rolling ball. Newton’s equation F, = MV may be rewritten asuﬁfg”ing)g:-v.

Integration over time resultsin u‘(arf;”mg)gtzvo—v where Vg istheinitial velocity.
eff

(rolling)
Vo:uzr:)”ing)gt and this may be used to eliminate Vo from the distance equation. The

Integration over time again gives You gt2=Vot—d. Thefinal velocity is zero when

effective coefficient of friction for the rolling ball may then be determined from the
equation

eff _d
Rrolling) = T -2 "
59

The ball mass does not appear in thisrelation. The dimensionless quantity table speed is

defined as yu(e:fomng)and issimilarly independent of ball mass. With this definition of

table speed, avery slow tableisin the range of 50-70. Normal table speed is80-100. A
very fast pool table might have a speed higher than 120. The cloth on abilliard tableis
usually finer and smoother than that on a pool table, and afast billiard table might have a
speed over 150. The force due to rolling resistance is much smaller than that due to
diding friction.

The dliding frictional force and the rolling frictional force of aball on atable are
independent quantities. Consider for example aball on ahard rubber surface; the dliding
friction would be very large, while the rolling resistance would be relatively small.
Alternatively, consider a ball on a Teflon surface with a soft backing; the sliding friction
would be relatively very small, while the rolling resistance would be relatively large. The
uniformity of billiard cloth material limits the range of extremes that are encountered in
practice. The official BCA (Billiard Congress of America) rules specify abilliard cloth
that is predominantly wool. The PBTA (Professional Billiard Tour Association)
requirements are even more specific, and detail a brand and type of billiard cloth, namely
Simonis 860; athough thisis partly a matter of sponsorship, it may be noted that thisisa



relatively fast pool table cloth that results typically in table speeds of 100 to 130 when
newly installed.

Problem 1.5: A ball islagged perfectly on a standard 9' pool table and it is observed that
the ball travels from the foot cushion to the head cushion in 7.00 seconds. What isthe
table speed? What was the initial velocity of the ball asit |eft the last cushion?
Answer: The playing area of astandard 9' pool table is 50" by 100". After accounting for
the ball width, the center of the ball travels (100"-2.25")=97.75" between cushions. The
acceleration due to gravity is g=386 in/s2. Thetable speed is

o _%gt2_0.5><386(£)>¢2_ ,

TableSpeed = — = = _ =1.97%%
Weolling) @ 97.75(in)
=19757.00%)= 967

Thisisafairly fast pool table. It iscustomary to approximate the g/(2d)=1.97 factor as
2.0 on a9 table. The table speed may then be estimated simply as 2t2 where thetimeis
measured in seconds. For playing purposes, it is usually unimportant to know the table
speed to more than 2 significant figures. The velocity after the last cushion was
2d _ 2(97.75in) :27.9(%]).
t 7.0s
Theinitial velocity is seen to be twice the time-average velocity, which is given by d/t.

_  ©ff -
Vo= Urolling) 9t =

Exercise 1.1: Measure the table speed of some of the tables on which you play regularly.
Rather than try to lag a ball perfectly, set up aramp with cue sticks, and adjust the height
of the ramp and initial ball placement so that the ball rebounds off the foot cushion and
stops just before touching the head cushion. Disregard the small time it takes for the ball
to achieve natural roll after impact with the foot cushion. Take the average time for
several rolls in order to account for timing inaccuracies.

A third important frictional forceisthat between two colliding balls. The forces
between two balls change during the collision. The collision timeisvery short, so these
forces can be very large in order to transfer energy from one ball to another during a
collision. Thefrictional forces act in adirection tangential to the surface of the ball at the
point of contact between the balls. Thisis shown schematically in Fig. 1.1. Thelinear
forces that accelerate the balls are directed between the ball centers. The resultant force
on aball isthe sum of these two vector forces. That velocity component of aball due to
the tangential frictional forcesis called either collision induced throw or spin induced
throw, depending on the spinning condition of the balls and on the cut angles involved.
When two balls slide against each other, both balls are accelerated by frictional forces.
The frictional force vector that accelerates one ball is exactly opposite to that which
accelerates the other ball. Note however that the angular acceleration due to the frictional




forces has the same sign on both balls, due to the fact that the opposing forces are applied
to the front of one ball but to the back of the other. Asbefore, to a good approximation
the frictional force is independent of the speed at which the two surfaces dlide against
each other. Theforceis constant unless the spinning balls “lock” against each other (as

two interlocked gears), at which time the dliding frictional force vanishes.
F:FN + FT

Fig. 1.1. The normal forces Fy;, tangential forces due to dliding friction Fr,
the resulting total force F, and the angular acceleration w are shown
schematically for two colliding balls. The magnitudes of the forces
change during the collision, but the ratio of the tangential and normal
forces are constant and are determined by the coefficient of friction. The
magnitude of the tangential forces are shown greatly exaggerated. Note
that although the tangential forces acting on the two balls exactly oppose
each other, the resulting angular accel erations have the same sign.

Problem 1.6: Two object balls are frozen together and aligned straight toward the foot
cushion exactly toward a marked spot. The nearest ball is 72" away from the cushion.
The farthest ball from the cushion is hit at an angle with the cue ball. The object ball is
observed to miss the point on the cushion by 4". Assuming that this collision induced
throw is dueto friction, what is the coefficient of friction for these two balls?

Answer: Fy is directed toward the marked spot, and Ft is perpendicular asin Fig. 1.1.
The resultant velocity is parallel to the total force vector. The coefficient of frictionis
related to the angle of throw o by

10
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tan(a) = —u=— =—
(ar) VW
Substitution of the appropriate distances gives the coefficient of friction as
w = fadig 0.0556
72"

Exercise 1.2: Measure the collision induced throw angle for several sets of balls at pool
rooms where you play regularly. Generally, if the balls are worn or dirty, they will have d
high coefficient of friction, and if they are new or polished, they will have alow
coefficient of friction. Smear some chalk on the contact point between the frozen balls,
and an increased coefficient of friction should be observed. Smear some talcum powder
on the contact point, and a smaller coefficient of friction should be seen. Place adrop of
water (or spit) on the contact point and the coefficient of friction will become essentially
zero. Correcting for collision induced throw is one of the challenging aspects of playing
with different sets of ballsin tournaments, and of playing at different pool rooms.

A fourth frictional force is the static friction between the cue tip and the cue ball.
The cue tip must not slide on the cue ball. If this occurs unintentionally, then a miscue
results and the cue ball behaves unpredictably; if the cue tip slides intentionally against
the cue ball, then an illegal “push shot” has occurred. The static frictional forceisrelated
to the normal force and to the static coefficient of friction by the relation ugatic=F1/FN
where F is the minimum force required to cause the cue tip to slide on the surface of the
cue ball.

Problem 1.7: For aparticular cuetip, it is observed that miscues begin to occur when the
Ccue tip contacts the cue ball at a height halfway between the center and the top of the cue
ball. What is the static coefficient of friction between the cue tip and the cue ball? If the
static coefficient of frictionis 1.0, what is the displacement at which miscues begin to
occur?

Answer: Refer to Fig. 1.2. The slope of the cue ball at the point of contact. is determined

by
chQ

SR8
.2
1. @20

R

where b is the displacement away from the center. When the force F is applied to the cue
ball in ahorizontal direction, this may be written as a sum of the normal force toward the
center of the cue ball FN=Fsin(c), and the tangentia frictional force with magnitude

Fr=Fcos(a). The coefficient of friction and the maximum displacement are related by

cot(a) =

11



Ustatic = Fi =cot(a) =

2
N 1- @9
R 9

Bmax O 0 Ugtatic
RO Vvi+ Mgtatic
For bmax/sz/z,

1
Wetatic = \/_/1/ \/é =577
For ustatic=1.0,
Prex O = = 707

Rﬂf

As seen for these two cases, a higher coefficient of friction allows the cue tip to contact
the cue ball at larger displacements without miscuing.

FN =F Sin(O()

Fig. 1.2. The normal forces Fy, tangential forces due to static friction Fr,
and the resulting total force F for contact between the cue tip and cue ball
are shown schematically. The magnitudes of the forces change during the
collision, but the ratio of the tangential and normal forces are constant and
are determined by the impact point and limited by the the static coefficient

of friction.

Exercise 1.3: Determine the static coefficient of friction between your cuetip and a cue
ball. Instead of determining the point of miscue (asin P1.7), hold a ball against a cushion
and stand the cue shaft vertically on the ball. Estimate the distance away from the center
ball, and use the equation in P1.7 to determine pgatic. Wipe the cuetip clean, removing

12



|al| chalk, and a smaller coefficient of friction should be observed. Experiment with |
|different kinds of chalk and with different tip conditions. Note that it is the displacement |
| of the actual contact point of the cue tip that should be measured, and not the |
| displacement of the cue shaft edge. |

13



2. Slideand Natural Roll

Suppose that at some time a ball is known to have some (center of mass)
trandational velocity and some spin (about the center of mass). For simplicity, assume
that the spin axisis horizontal and is perpendlcular to the trandational velocity (i.e. the
ball has straight topspin or draw; e.g. V =Vi and = 0)] ). Asthe ball slides on the cloth
on the table, the friction between the ball and cloth will cause both the translational and
angular velocity to change. Thisforce will act to accelerate the ball, that is, to increase or
decrease the velocity, until an equilibrium situation occurs in which the trandlational and
angular velocities “ match” each other, at which time the sliding frictional force becomes
zero. Thisisthe natural roll (also called normal roll, smooth roll, or rolling without
dlipping) situation. Over asmall time dt, the distance traveled by the ball will be Vdt, and
the outside surface of the ball will roll a distance Rodt relative to the ball center of mass.
Therefore, this “matching” occurs when V=Ro.

The natural roll condition isimportant to examine because the speed and spin of a
dliding ball are aways being forced toward the natural roll condition by the sliding
friction, and once achieved, natural roll is maintained by the ball until it collides with
another ball or cushion or rollsto a stop.

F

Fig. 2.1. The linear velocity V, angular velocity o, and corresponding
frictional force F are shown schematically for a backspin shot. V is
positive, whereas F and  are taken to be negative as shown.

Kinetic energy is not conserved during the equilibration period as the sliding ball
approaches the natural roll condition. Thisiseasy to seein the case in which the
trandational velocity and angular velocity oppose each other, asin a backspin shot
depictedin Fig. 2.1. (Positive o istaken to bein the clockwise directionin Fig. 2.1.) Ina
backspin shot, theinitial frictional force acts to both slow down the ball and to decrease
the magnitude of the spin, clearly decreasing simultaneously both types of kinetic energy.

A useful concept to introduce in this discussion is the spin/speed ratio o/V. In
some situations, a more useful quantity is the dimensionless ratio J=(Rw/V); for the above
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backspin shot, thisistheratio of velocity at a point on aball on the rotational equator that
is due to the spin to the velocity of the center of mass of the ball. In situationsin which
severa spin components are examined simultaneously, the dimensionless vector quantity
J=(IxJy,J)=Ro/V is useful. As discussed above Jy=+1 corresponds to the natural roll
condition when the velocity is directed along the x-axis.

The frictional force acts on the very bottom point of the ball, where the ball
touches the cloth, and it points in a horizontal direction. The force acts to accelerate the
ball according to the equation F = MV . Integrated over some time period, thisgivesa
change of momentum

Ft=M(V- Vo).
inwhich Vg istheinitial velocity vector. Notethat since F and V point in opposite
directions in a backspin shot; the ball slows down over time. When F and V point in the
same direction, e.g. aball over-spinning with topspin, the ball speeds up over time. Inthe
case depicted in Fig. 2.1, this equation simplifiesto

|Flt=-M(V-Vo)
or, after eliminating the mass from both side of the equation and introducing the ball-
cloth dliding coefficient of friction,

pot =-(V-Vo)
where the sign of the right hand sides results from the fact that the velocity and force
vectors point in opposite directions. (In the general case for positive Vg, F>0 when
Rwo>V, and F<0 when Rwo<Vg or in other words, F and (J-1) have the same sign.)

The angular velocity of the sliding ball changes according to the equation
r" F=1d. Forthebackspin shot, r=-RK , F=|F|i, and @ =w]. Inthissituation, this
equation simplifiesto RF|=lw . Integrated over some time period, this gives

RFIt = I(co - ooo).
Notein Fig. 2.1 that for a backspin shot the frictional force is acting to increase the
angular velocity from an initial negative value to afinal positive value. If the cue ball
contacts an object ball while the angular velocity is still negative, thisis called adraw
shot. If al the spinisremoved by the cloth friction and the ball is spinning neither
forward nor backward upon impact with an object ball, thisis called astun shot. If
forward roll, or in particular natural roll, is achieved prior to collision, thisiscaled a
drag shot. Asshown in the above equation, it istheinitial angular velocity, the sliding
friction between the ball and the cloth, and the time before the collision that distinguishes
these three shots.

Problem 2.1: What is the relation between linear and angular velocity for adliding ball?

Answer: Eliminating the common |F|t from the above two expressions gives
I
—R((D - 0)0) =- M(V- Vo) .

Using the previous expression for | for aball resultsin
— 2
V—Vo- ER((D- (1)0) .
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This expression isvalid at any time the ball is diding on the cloth. Although derived
specifically for the backspin shot, this expression is valid for any frictional force. Note
that for the backspin shot, V decreases as o increases, and for the over-top-spin situation,
V increases as o decreases. This shows that the relation between linear and angular
velocity does not depend on the ball mass or on the ball-cloth dliding coefficient of
friction.

Problem 2.2: Determine the final linear velocity of aball after natural roll is achieved as
afunction of initial linear and angular velocities.
Answer: Natural roll is achieved when the linear and angular velocities equilibrate.
Substituting V=R in the expression from P2.1 gives

VR = 3Vo +% Rog
Notethat if theinitial angular velocity were zero, then the dliding ball would eventually
slow down to 5/7 of itsinitial velocity. If theinitial angular velocity matched exactly the
initial linear velocity, Vog=Rw, then the linear velocity would remain unchanged. If the
initial angular velocity is negative, as for a drag shot, then the final linear velocity is even
less than /7 of the initial velocity; for example, if theinitial angular velocity is equal to
natural roll, but in the opposite direction, Vo=-Rwy, then the final velocity is 3/7 of the
initial velocity. If theinitial spinisvery large and negative, then the final natura roll
velocity will be negative; this can occur in masse shots, or in situations involving
collisions with other balls. Note that the natural roll velocity does not depend on the ball-
cloth friction or the ball mass.

Exercise 2.1: Experiment with the drag shot. Use a striped ball in place of the cue ball so
that the spin is easily observed. Strike the “cue” ball below center. Observe how the ball
initially spins backward. The cloth friction slows this backspin until at some point the
ball isnot rotating at all, but is simply sliding across the table. Beyond this point the ball
beginsrolling forward. At some point all sliding stops, and the ball achieves natural roll.
During al of the time that the ball is sliding on the cloth, the speed of the ball is
decreasing. If you have avideo camera, record some of these shots and play them back
in slow motion. The drag shot is useful when playing on dirty or unlevel tables, and a
low-speed impact between the cue ball and object ball isrequired for position. Theinitial
high speed of the cue ball reduces the effect of the unlevel table, and only at the very end
after natural roll is achieved and the velocity is reduced to about 3/7 of the initial velocity,
does the impact occur. The average velocity of the cue ball is about /7 of the initial
velocity, which means that the effect of the unlevel table has been reduced by about 2/7 or
29% from the case where natural roll is achieved immediately.

Exercise 2.2: Experiment with a stun shot. A stun shot is when the cue ball has zero
angular velocity about the horizontal axis upon contact with an object ball or cushion.
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Set up a straight-in shot with an object ball, and place the cue ball at various distances
away from the object ball. (Use astriped ball in place of the cue ball so that the spin can
be easily observed.) For agiven distance and shot speed, shoot with just the right amount
of backspin so that the cloth friction has time to remove the spin. The cue ball should
stop exactly upon impact, and roll afterwards neither forward nor backward. For afixed
distance, the slower the shot speed, the more extreme will be the backspin required to
achieve a stun shot impact. Experiment with stun shots on different tables. Sticky tables
(high dliding friction between the cloth and ball) require more extreme backspin than
dlick tables to achieve stun. Stun shots are important for position play and, as discussed
in later sections, for judging accurate carom angles.

Problem 2.3: What is the shape of the path taken by a dliding ball before natural roll is
achieved? What is the shape of the path after natural roll is achieved?
Answer: Integration of F = MV twice gives

2
%Ft =M(g- gg- Vob)
1 _»2
=g+ Vot + = Ft
d=do ot oM

Since the choice of coordinate axesis arbitrary, assume that the axes origin corresponds
to t=0, and that the axes are oriented so that the x-component of the sliding force is zero.
The coordinates of the path are then given by
& _ Doxo,, 1 20 5_oxs, 20 62
ey~ &Voyg 2m eFoys” eVoyg  e5u0dg
Because of the choice of axes, the velocity in the x-direction remains unchanged over
time. Using the relation t=x/Vx to eliminate t from the y part of this equation gives

which may be recognized as an equation for aparabola. While the ball is sliding on the
cloth, the path of the ball is a parabola, the shape of which is determined by the initial
velocity and by the frictional force between the ball and the cloth. This path does not
depend on the ball mass. This frictional force remains unchanged in both direction and
magnitude as long asthe ball isdliding. This appliesto the paths taken by balls after
collisions with cushions or with other balls, and also to the cue ball when struck with an
elevated cue stick (i.e. masse or semi-masse shots). The ball is accelerated by the sliding
force until natural roll isachieved. After natural roll is achieved, thereis no sideways
force exerted to further accelerate the ball, so the ball rollsin a straight line.

Problem 2.4: When aball achieves natural roll, what fraction of itskinetic energy is
trandational and what fraction is rotational ?
Answer: Thetotal kinetic energy is
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T= T(Trans) + T(Rot) = 1LoMV2 + Vol w2 = YoMV2 + VsMV2 = 7/1gMV2.
Thisgives

T(Trang _9
T 7

T(Rot) _ 2
T 7

Now that the total kinetic energy expression for anatural roll ball is known, the
issue of rolling resistance can be examined in more detail. The previous conservative
model of aball rolling up an inclined plane will be used to understand the various forces
involved. In the case of aball rolling without slipping up an inclined plane, the result of
these forces is known, namely that Rm =V is maintained as the ball slows down, but the
forces themselves required to achieve this result are not obvious. In order to apply
Newton's laws directly, these forces must be known beforehand. Therefore Lagrange's
equations of motion will be used. The generalized coordinates will be taken to be the
distance up the incline s, the angular rotation of the ball 6, and the undetermined
multiplier associated with the constraint equation, A. The expressions for the kinetic
energy, potential energy, and the constraint equation are

T= VLMV + Vol

U = sMgsin(a)

f(s0) =RO—s=0
The Lagrangian is L=T-U+Af, and the equations of motion are determined from the
equation, — - — — =0, for the three coordinates s, 6, and A. Substitution gives the

ag dtaq;
three equations 7

—Mgsin(e) —A—MV =0

AMR—lw =0

R6—s=0.

Differentiating the last equation twice gives Rw =V s Solving the second equation for
the undetermined multiplier gives A=l v JR2. Substitution into the first equation then
gives

: -1
MVg=— (1+W) Mgsin(e) = -7 Mgsin(o)

= —Mgsin(a) + Z7Mgsin(o:) [rolling without Slipping]
= Fgravity + Fconstraint
If, instead of rolling without slipping, the ball were allowed to slide freely, then Newton's
equation of motion in this coordinate system would have been simply
MV s = Fgraity =-Mgsin(c) [with free Slipping]
Therefore the sliding ball is seen to slow down faster than the rolling ball, all other things
being the same. The effective force arising from the static coefficient of friction between
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the ball and the incline is seen to be #7Mgsin(o), and this force is directed uphill,
opposing the gravitational force. Because there isno sliding associated with this
frictional force, thereis no energy dissipation in this model system. The only kinetic
energy lost isthat associated with the corresponding increase in potential energy. Aswas
done in the previous section for a gliding block, an association with the effective slope
and a coefficient of friction is made, W(rolling) =sin(e). In the previous section, an

equation of motion was assumed of the form p?::)”ing)g:-v s Itisnow seen that this
assumption was correct, with the association

-1 -1
f .
u?rfolling) = (1+M—IRZ) sin(o) = (1+M—|RZ) H(rolling) = Y7H(rolling)
When should u(erfz)”ing) be used, and when should [y olling) be used? The answer is that

for arolling billiard ball, it doesn’t matter which coefficient of friction is used, provided
of course, that it is used with the corresponding equation of motion. The use of the
equation of motion involving Yolling) has the advantage that once it has been
determined for one object, the same value can be used for other objects made of the same
material but with different shapes, such asrolling cylinders, rolling tubes, rings, or
hollow balls. The quantity Urolling) IS therefore, in some sense, more fundamental than

is pfrf‘;”mg). The motion of these objects will of course be dightly different, due to the

dependence on the moment of inertia of the equations of motion, as demonstrated in the
following problem.

Problem 2.5: Thetable used in P1.5 is moved to the surface of the moon. The billiard
ball is replaced with a cylinder made of the same material asabilliard ball. How long
will it take for the cylinder to roll the length of the table?

Answer: First determine Wrolling) for the table from the previous data:

eff
Hrolling) = 75H;;jing) = = 00145

5>096.7
For asolid cylinder, I=MR2/2. gmoon=63.8in/s2, about 1/6 the gravity of the earth. The
eguation of motionis

) -1
=_ (1 + M—IRQ-) OmoonH(rolling)

Integration twice over time, then solving for t gives

MR? _\/ 3X97.75in _
Omoonttrolling V| 63.8(in/ s%)x0.0145

Solving the same equation for a ball givest=17.2s, aresult that may aso be obtained
simply by scaling the earth time, 7.00s by the factor [Gearth/ moon = 2:46. Therefore,

most of the lag time difference is due to the different gravitational forces of the earth and
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moon, with a smaller difference due to the different moments of inertia of the cylinder
and ball.

Problem 2.6: Taking into account both the dliding friction and the rolling resistance,
what is the total distance traveled by a cue ball with Vo=0 as afunction of the initial spin
Rwo? (neglect collisions with other balls and cushions)
Answer: Asdiscussed in more detail in the following sections, V=0 is the appropriate
initial condition immediately after the cue ball collides head-on with an object ball; the
object ball removes the velocity of the cue ball, but leaves its spin unchanged. According
to P2.2, this spin then accel erates the cue ball to the natural roll velocity Vnr=27Rmo.
The time required to achieve natural roll is given by
ZR(DO
Tusg
where [s is the dliding friction coefficient and mg is taken to be positive. The distance
covered by the sliding cue ball during thistimeis
2( Rw 0)2
49usg

Upon achieving natural roll, the equation of motion is then determined by the rolling
resistance. Thetotal rolling timeisgiven by

VR
e
Y(rolling)9
and the total rolling distance is given by

tNR =

12
dnNR = 5 UsOtNR =

tR:

2
e\f/fEIR _ 2(':ﬁ(ﬂo) _
2Wrolling)d 4 (rolling)9
The total distance for both the slide and theroll is
@201, 1 °
é4ggﬂéus

— 1 eff 2 _
dR _VNRtR - 'Zu(roning)gtR -

dhotal = dnR * dr = (Ro) =
Y (rolling) @
This equation holds for both topspin and draw shots. An important point to notice is that
the total distanceis proportional to the square of theinitial spin. Thisexplainswhy itis
much easier to position the cue ball accurately on a stop shot than on a strong draw or
force-follow shot; asmall variation in the initial spinis magnified into alarger distance
for large initial Rwg than for asmall initial Rwg.
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3. CueTip/Cue Ball Impact

Consider the situation in which alevel cue stick strikes the cue ball. The cuetip
applies aforce to the cue ball at some point on the surface of the ball. This contact time
is not instantaneous, but it is very short. Unlike aball-to-ball impact (characterized by
small tangential frictional forces and therefore resulting in aforce that is directed
essentially between the centers of the balls), the cue tip does not slip on the cue ball
(except of coursein amiscue situation). With these assumptions, the forceis directed
along the direction of the cue shaft. The angular acceleration from thisforceis given by
theequationr * F =1 @. When alevel cue stick strikes the cue ball, the angular
acceleration along the direction of force, F/|F|, is given by

c'ox—':=(|'1(r’ F))xE =0 .

IH |F
There is no component of angular acceleration around the axis of the cue stick, so thereis
no sideways frictional force between the ball and the cloth; the cue ball didesin a straight
line in the direction of the cue shaft, while rotating about either or both the vertical axis
(i.e. sidespin) and the horizontal axis perpendicular to the cue shaft (i.e. topspin or draw).
This results from the fact that the moment of inertiafor apool ball is proportional to the
unit matrix. (If theinertiatensor of an object is not proportional to the unit matrix, e.g. if
the ball has an embedded off-center weight, then it will in general curve asit slides or
rollsinstead of moving in astraight line.)

First consider the case in which the cue tip strikes the cue ball exactly in the
center. Inthissituationr ”~ F =0=1 o, and thereis no angular velocity imparted directly
to the cue ball. The only thing that occursis atransfer of linear momentum and
trandational energy between the cue stick and the cue ball. It will be assumed that the
contact time is so short that the hand/skin/cuestick effects can beignored. That is, at the
very beginning of the contact time, the cue stick slows down and starts moving slower
than the hand, and the skin begins to tighten, but by the time any significant extraforceis
exerted on the cue stick, the cue ball has already departed and lost contact with the cue

tip.

Problem 3.1: What is the relation between the cue stick energy and velocity, the length

of the stroke, and the applied force? (Assume a constant force is applied by the hand to

the cue stick during the stroke.)

Answer: Integration of the equation F = MSV over time gives Ft = MS(V - VO) = MgV

where F is the force applied to the stick and Mg is the mass of the cue stick. Integration

again gives % Ft? = Ms(x- xo) = Mg inwhich d isthe distance of the stroke. Solving

the first equation for t and substitution into the second gives for the kinetic energy
T=YMgV2 = Fd.

Solving for V gives
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V= ,2Fd
MS
The cue stick energy is proportional to the stroke length and to the applied force, and the
cue stick velocity is proportional to the square root of the stroke length and of the applied
force. It isimportant to note that in the expression T=Fd, the energy does not depend on

the mass of the cue stick. This means that for a given force on the cue stick and a given
stroke length, alight cue stick will acquire the same energy as a heavy cue stick.

Problem 3.2: What is the relation between the final cue ball velocity and initial and final
cue stick velocity, and the mass of the cue stick?
Answer: Before the impact, only the cue stick has momentum MgVp and energy ¥oMgVo2.
After the collision, both the cue stick and the cue ball have energy and momentum.
Conservation of momentum and energy, assuming a center-ball impact, give

MgV = MgVg + MpVy,

3 MeV§ = . MgV + 3 MpVp -
Solve the first equation for Vs, and substitute into the second equation to obtain
2Mg

Vp =——V
b Ms+Mb 0
Vs:ms;mb 0
S b
Vp _ 2Mg
Vs Ms‘Mb

A typical cue stick weighs 180z, or about three times the weight of a pool ball. In this
case, Vp=%2Vo, Vs=Y5Vp, and Vp/Vs=3, so the cue ball is moving about 3 times faster than
the cue stick immediately after impact. If the masses were exactly equal (avery light cue
stick), then the final ball velocity would be equal to theinitial stick velocity, and the final
stick velocity would be zero; all of the energy would be transferred from the stick to the
ball. If the stick mass were less than the ball mass, then the final stick velocity would be
in the opposite direction to theinitial stick velocity; that is, the stick would bounce back
from the cue ball. Under no condition does Vp=Vg; that is, there does not exist a
combination of cue stick mass and ball mass such that both are moving forward
immediately after impact at the same velocity.

Problem 3.3: What isthe fraction of energy that is transferred from the cue stick to the
cue ball asafunction of the stick and ball masses?

Answer: Using the final stick and ball velocities from P3.2 gives
4AMpMg

4MpM
LR TRV LM R
S S

Let as=Mg/Mp, be the stick to ball massratio. Then theratio of energiesis given by
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To. o
To (1+ o s)
When as=1, then this energy ratio is unity, in agreement with the conclusionsin P3.2.

When there is a mismatch of masses, this energy ratio is less than one and the efficiency
of transfer of energy in the collision is reduced.

If a60z cue stick results in optimal transfer of energy, then why not use one? If it
isnot optimal, then what is? There are two separate components to the answer. First, it
is not always the most efficient transfer of energy that isimportant, but rather control of
the energy that is transferred to the cue ball. It iseasier to control a heavier stick than an
extremely light one, and the inherent inefficiency from the mass differenceis away to
reduce errorsin the speed of the cue ball. A possible exception to thisisthe break shot in
open-break games such as 8-ball and 9-ball in which the maximization of cue ball energy
isdesired. Thisleadsto the second component of the answer.

As the bicep contracts to accel erate the cue stick on the break stroke, both the
mass of the forearm and cue stick mass are accelerated. To understand how this affects
the final object ball energy in at least a qualitative manner, some simplifying assumptions
may beimposed. Assume that the forearm isathin rod of uniform mass. The moment of
inertia of the forearm would be M+L2/3 where Msis the mass of the forearm and L is the
forearm length. The moment of inertia of the cue stick about the elbow isMgL2. Asboth
the arm and stick are accelerated about the elbow by a constant force F for an angle 6, the
total energy isgiven by T=FL6. For agiven stroke length L0 and force F, the total
kinetic energy isindependent of the cue stick and forearm masses. Writing the two parts
of the energy explicitly gives

T=To+T =3MsLo® +EMiLw? = TO§+3M—'\L§
where Tg isthe cue stick energy. Although T, the total kinetic energy of the arm and
stick, isfixed by T=FL6, the fractional division of this energy between the stick and arm
IS seen to be determined by the massratio. It isinteresting in this expression that the only
important factor isthe massratio of the forearm and stick; the length of the forearm does
not matter, at least within the current set of simplifying assumptions. This means that the
optimal cue stick weight will be the same for tall players asfor short players, provided
the forearm masses are the same. Some players pivot their arm from the shoulder rather
than the elbow on the break shot. The above analysis indicates that the additional arm
length isirrelevant, but with this technigque the entire arm mass rather than simply the
forearm mass must be included into the Ms term. Whether thisis beneficial or not
depends also on the relative forces applied by the different muscle groups involved in the
two stroke techniques.
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The dilemmais now apparent from the above equation and P3.3. In order to
achieve the highest transfer of energy from the cue stick to the cue ball, avery light 6oz
cue stick would be necessary. But in order to maximize the cue stick energy Tp for a
fixed total energy T during the stroke, a very large cue stick mass would be necessary.
Consequently, maximization of the cue ball energy requires some kind of compromise
between these two extremes.

The quantity Tg is the cue stick energy at the end of the stroke, and P3.3 gives the
relation between Tg and the cue ball energy Tp. The combination of these relations gives

Ty _ AMpM2 _ 402

T (Mp+Mg) (Mg +iM¢)  (1+ag) (s +Zar)
In the last expression, as=MJ/My isthe ratio of the stick mass to ball mass, and a=Ms/Mp,
isthe forearm to ball massratio. For a given forearm mass, the optimum stick massis
determined by differentiating the above expression with respect to as, setting the result to
zero, and solving for ag asafunction of af. Thefinal expressionis

-1 1,2
Os(opt) =3 2 T 50

which is an equation for a parabola. When =0, it is seen that oig(opty=1, and the optimal
cue stick mass would be 60z, a result which agrees with the conclusions from P3.3. A
light forearm mass might be 240z, which corresponds to o=4, a.g(opt)=2.2, and an optimal
cue stick mass of 13.20z. A typical forearm mass might be 360z, which corresponds to an
optimal stick weight of 15.40z. A heavy forearm mass might be 640z, which corresponds
to an optimal stick weight of 19.30z. A person who breaks with his entire arm, pivoting
at the shoulder rather than the elbow, might have an arm mass of 1500z, which
corresponds to an optimal stick weight of 27.20z

In the last few years, many professional 9-ball players have switched from heavy
break cuesto lighter break cues. These players may till use atypical 19-200z cue for
their normal strokes in agame, but they break with alighter 15-180z break cue. Break
cues of this weight are consistent with the above equations, elbow pivots rather than
shoulder pivots, and slim to medium body types. The actual breaking technique used by
these playersis more complicated than that considered above, and involves pivots about
both the shoulder and the elbow.

Problem 3.4: What is the spin/speed ratio of the cue ball immediately after contact asa
function of the vertical cuetip contact point?

Answer: For ssimplicity assume that the contact point isin the vertical plane through the
center of the cue ball. When the cue tip applies aforce in an off-center hit, the force
accelerates the center of mass, and the resulting momentum is p=MV. The linear

t
momentum is given by the expression p = q:(tq)dtd in which the force is not constant

during the contact time and t is the (very short) contact time between the cue tip and the
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cueball. (Anideal impulsiveforceisone that integrates to a constant momentum change
asthe contact time decreases. A cuetip contacting a cue ball and a hammer driving a nail
are two examples of nearly ideal impulsive forces.) Integrating the angular acceleration
equation in the same way gives pRsin(0)=pb=Il®. The quantity b=Rsin(0) is the impact
parameter, and is the vertical offset away from a center-ball hit. b ispositive for an
above-center hit, zero for a center ball hit, and negative for a below-center hit.
Eliminating the linear momentum p from these two sets of equations gives

lo _2MR%w

MV = — =
b 5h

_aRwp_Sadj
ey 8 2eRo

J

If b=0, then the angular velocity o is also zero, which means that thereis no spin
imparted with a center-ball hit of the cuetip. If the cuetip hits above center, thenbis
positive and m=wy is positive, which meansthat the ball isrolling in the same direction as
the velocity. If the cuetip hits below center, then b is negative and o is negative, which
means that the cue ball is spinning in the opposite direction asin adraw or drag shot.
Note that the above equations are valid only for -REbER, or else b is meaningless; the cue
tip would missthe cue ball. For practical reasons, b is restricted even more due to the
fact that contact points close to the edge of the cue ball result in miscues (see P1.7).
Although determined above for angular velocity about the horizontal axis, the same
eguation applies to angular velocity about the vertical axis resulting from a horizontal
impact parameter, or, in fact, to any arbitrary angular velocity axis.

Problem 3.5: At what vertical contact point byr will the cue ball have natural roll?

Answer: Natural roll occurs when V=Rwy. Substitution into the above equation gives
bNR = —g R

Noting that the height above the cloth is given by z=R+Db, this point may also be written
INR ™ % R= 10 D

where D=2R is the height of the ball. This point is actualy rather high on the cue ball,

and it isrisky to attempt to hit higher than this due to the possibility of miscuing (see

P1.7). Sidespin that isimparted to the cue ball with alevel stick has no effect on natural

roll, so the set of points on the cue ball for which natural roll is achieved immediately

with no dliding are along the horizontal line at a height 719D above the table surface.

Exercise 3.1: Experiment with shots involving natural roll impact points. Use a striped
object ball in place of the cue ball. Orient the ball so that the plane defined by the stripe
center istilted at various angles away from vertical. The cue stick should be held as level
as possible and should be within the plane defined by the stripe. The cue tip contact point
should be exactly in the center of the stripe at a height 710D above the table. When
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executed correctly, the stripe will appear “stationary” asthe ball rolls. A small error in
the contact point, or in the ball setup, will result in a small wobble of the stripe on the
rolling ball.

a A b A
Z V4
7 N
Y < Nl | y

Fig. 3.1. The cue tip contact points corresponding to various arbitrary
sidespin/speed ratios are denoted by the thin lines as viewed from the rear
of the cue ball. Figure a denotes constant spin/speed ratios immediately
after contact with the cue tip; these are vertical straight lines. Figure b
denotes constant spin/speed ratios after natural roll is achieved; these are
straight lines that all intersect at the point (y,2)=(0,0). In both cases, the
larger offsets from the center are associated with higher spin/speed ratios.

Problem 3.6: Which cue tip contact points will result in the same sidespin/speed ratios
immediately after contact with the cue tip? Which contact points will result in the same
sidespin/speed ratios after the cue ball achieves natura roll?

Answer: Consider the coordinate axesin Fig. 3.1. The z-coordinate is the height above
the cloth, and the y-coordinate is the distance away from the vertical plane through the
center of the ball. by =y isthe horizontal impact parameter, and b=(z-R) is the vertical
impact parameter. Denote the point of contact with coordinates (y,z). Intermsof the
linear momentum p, the initial forward velocity and forward rotation are given by

p
Vo =
07™'Mm
o = P2 R _5p(z- R
Oy I MR

The forward rotation depends only on the height of the cue tip contact point zand not on
the sideways displacement y. Upon achieving natural roll, the final forward velocity (see
P2.2) isgiven by
_5p . 5p(z- R _ Spazp

™ 7MR TMERZ
The sidespin (i.e. the angular velocity about the vertical axis) is assumed to be unchanged

-5 2
VNR =% Vo 5 Rogy
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by the frictional forces of the diding ball. From P3.4, the initial, and final, sidespin about
the z-axisis given by
_&dy g, _ 9Yp
2 _éZRzg'VO " 2RM
The sidespin depends only on the horizontal displacement, y. The sidespin/speed ratio for
theinitial velocity is given by
Ro, _ 5y
J, = =—=
Vo 2R
Thisratio depends only on the horizontal impact parameter y, and is independent of the
ball speed Vg and vertical contact point z. The same ratio would occur with a soft hit as
with avery hard hit.
Taking the ratio of the sidespin and final natural roll velocity gives

J = RU)Z :Ziailo

where J;NriS the desired spin/speed ratio. The set of points (y,z) that correspond to the
same Jz NR are given by the straight line defined by

& 7 6
z=§ -y
€2J;NRD

The lines corresponding to several J;Nr areshownin Fig. 3.1. Itisinteresting that
exactly the same effect may be obtained by striking the cue ball at any point on agiven
straight line, provided the cue ball has sufficient time to achieve natural roll through
diding friction. For adesired final velocity, ahigher initial velocity isrequired for small-
z contact pointsin order to overcome the drag. Note that higher sidespin/speed ratios
(larger J;NR) are associated with straight lines closer to horizontal, and smaller ratios
(smaller J; NR) are associated with more vertical slopes.

Problem 3.7: Of the set of points (y,2). that correspond to a constant natural-roll
spin/speed ratio J; Nr, Which point (yo,zg) corresponds to the smallest displacement from
center ball?
Answer: Consider Fig. 3.2. All the points a given distance from center ball will form a
circle. The smallest circle that touches the desired straight line, as determined in P3.6,
will define the smallest displacement that gives the desired spin/speed ratio. The point at
which this smallest circle touches the appropriate straight line is denoted (yo,zg). At this
point, the curve defining the circle and the straight line will be tangent, and the three
points (0,0), (O,R), and (yo,zo) will form aright triangle. Let o be the angle away from
vertical asindicated in Fig. 3.2. The tangent of this angleis given by tan(o)=yo/zg, and
also by tan(a)=(R-zg)/yo. Equating these two expressions gives

¥6 =2(R- %).
Completing the square on the right hand side of this equation and rearranging gives

27




%+(2- 3R] =(4R".
Thisisrecognized as the equation for acircle of radius % R centered at the point (O,% R).
Contacting these points with the cue tip is called aiming on the small circle. When a
player aims on the small circle, and the cue ball subsequently achieves natural roll, the
desired spin/speed ratio J; Nr IS achieved with the minimal displacement from center ball.
It is possible to achieve much higher spin/speed ratios when the cue ball is allowed to
achieve natural roll than the ratios that can be obtained immediately after cut tip contact
as demonstrated in the following problem.

Line of constant
spin/speed ratio
contact points

“Small Circle”
of aim points

y

Point of minimal
displacement from center

-

(0,0)
Fig. 3.2. The set of points that correspond to the minimal displacements
from center ball for various spin/speed ratios after natural roll is achieved
fall on asmall circle of radius R/2 that touches the bottom point of the cue
ball.

Problem 3.8: What isthe natural roll sidespin/speed ratio, Rwz/VNR, for the equatorial
cue tip contact point P1=(y1,21):(% R, R)? What is the natural roll sidespin/speed ratio

for the contact point P2:(y2,22):(% R3 R)’? At what contact points Pa=(y3,z3) would the

initial spin/speed ratio, Rw Vo, be the same as the natural roll spin/speed ratio of P»?
Answer: From P3.6 the natural roll spin/speed ratio for P1 is given by
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8&%29 = —78%/—19 - 2.475

eVNRZ 2€20 22
The natural roll spin/speed ratio for P2 is

TR0 _TBO_T 4.

eVNRO 2ez0 2
Although the displacements away from center of these two points are the same, namely
R/\/2 , the sidespin/speed ratio for the second point is over 41% larger than the first
point. The second point Py ison the “small circle’” and therefore results in the maximal
natural roll sidespin/speed ratio for this displacement distance.

In order to achieve a comparable initial sidespin/speed ratio

7 _Rw, _Sayp
27 Vg 2¢R®

P3=(y3.) = (jZ, RZ)
However, the set of points P3 are not on the cue ball. Therefore, it isimpossible to
achive such alarge sidespin/speed ratio without taking advantage of the drag to reduce
the ball velocity. For practical purposes, a sidespin/speed ratio of 3.5 is about as large as
can be attained with a cue tip impact with alevel cue stick. Larger ratios can be achieved

only with elevated cue stick strokes (masse) or with collisions involving other balls.

It is sometimes convenient to think of the cue ball spin and velocity at any
moment in time for adiding ball in terms of an “effective cue tip contact point”. That is,
for agiven linear and angular velocity of a cue ball, there exists a contact point on the cue
ball at which, if the cue tip where to strike a stationary ball at that point, with the correct
velocity, the result would be to match, or to reproduce, exactly the same spin and speed.
Because the linear and angular velocities change as the ball slides, the effective contact
point is time dependent. From P3.6, the horizontal and vertical components of the spin
are related to the vertical and horizontal components of the impact parameter of the cue
tip contact point according to

§&b)"gff(-,j:Rmz: Rwo,
28R, V  (Vo- ugt)

52%3“ 6 Roy (Rogy+Sug)
26 Rg V (Vo- ngt)
where the time dependence of the angular and linear velocities due to the cloth friction on

the dliding ball from Section 2 have been used. The origin t=0 is taken in the above
equations to be the time at which the cue tip strikes the ball.
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Problem 3.9: Show that the set of effective contact points corresponding to bye‘ff (t) and
b (t) for adliding ball lie on a straight line passing through the coordinate points
(v,2=(0,0) and (y,2)=(by(0),R+b(0)).
Answer: Let bSff be considered as a function of by&ff and defined parametrically through
thetimevariablet. Solve thefirst equation above for t in terms of byeff, and substitute
into the second to give

(R+5"0) _(R+5"(0)

05" (1) 65" (0)

Theright hand side of this equation is time independent. Therefore, the slope of the
curve defined by the points (y,2)=(by&f(t), R+bAf(t)) is a constant, independent of time,
and the set of time-dependent effective contact points lie on astraight line. The distance
(R+b£f(t)) isthe height of the tip contact point above the cloth as seen for examplein
Fig. 3.2, and the distance by&f(t) is the horizontal tip displacement. Therefore, the line
passing through the point (0,0) at the bottom of the ball to the initial point
(by€f(0),R+b,£(0)) has the same slope as the rest of theline. The line segment of
effective contact points ends when b£f(t)=25R, at which time the ball achieves natural
roll.

The result of P3.9 allows the player to compensate accurately for the effects of
table friction on the spin axis with the following approach. First determine the desired
spin axis at the eventual position of the cue ball. A stun shot for example, whichisa
frequent goal, would have a vertical spin axis at the time the cue ball collides with the
object ball. This spin axis corresponds to some effective contact point (byeﬁ (t),R+bEff(1)).
In the case of a stun shot, this point would have coordinates (byeff(t),R) and correspond to
pure sidespin. The player must then estimate, based on shot speed and the cloth friction,
the required vertical offset below center in order to achieve a stun shot. Let thisvertical
distance be denoted 6. The player then draws an imaginary line from the point
(byeff (t),R), corresponding to the desired target spin state of the cue ball, to the point (0,0).
The point on that imaginary line that corresponds to (byeff (0),R-0) isthe desired contact
point. Other final spin states would be estimated in the same manner. The straight lineis
always drawn from the final effective contact point to the origin (0,0), and the player
works backward in time, so to speak, from the final spin state of the cue ball to the initial
tip/ball contact time. If, during this process, the actual contact point (byEsz (0),b£(0)) is
judged to be outside the boundary at which miscues begin to occur (see P1.7), then the
desired shot is not possible, and the player should seek other aternatives.

| Problem 3.10: What is the relation between the cue stick velocity immediately before |
| contact, the cue ball velocity immediately after contact, and the impact parameter b?
| (assume that the total kinetic energy is conserved) |
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Answer: Conservation of linear momentum and kinetic energy give
MgVp = MgVg + MpVi,

IMVE =iMvZ+ IMpVE +31 0f

2 a2
=3 Mg gei +25 Rg MpV2
Solve the first equation for Vs, and substitute into the second equation to obtain
AV
Vb =
My, 5ads”
1+ +3
Mg eRo

It may be verified that this expression agrees with that of P3.2 when b=0. It may now be
understood why it is desirable to avoid spin on the cue ball during the break shot. For a
given cue stick energy, or velocity Vg, any spin corresponding to nonzero b has the effect
of reducing the cue ball velocity and the translational kinetic energy; the maximum cue
ball speed is achieved with a centerball b=0 contact point. Theratio Vp/Vgis plotted asa
function of impact parameter for some selected ball/stick mass ratiosin Fig. 3.3.

Problem 3.11: What isthe vertical impact parameter that maximizes the ratio VNr/Vo
where VNR is the cue ball natural roll velocity and Vo is the before-collision cue stick
velocity?

Answer: From P2.2, P3.6, and P3.10, the natural roll velocity is given by

1+ . — .
¢ e RO +
2 10 R
VNR-7Vb+7R(Db-('7)g v 520
91_'_ b +%‘_0 -

Solving for the velocity ratio, differentiating with respect to b, setting the result to zero,
and simplifying gives

@ 0 =-1+ Z + _2 %Q
eRe max Vg 5 5eMg@
For a60z ball and an 180z stick, the optimal impact point is given by
Zdoo =0.238 [Mg/Mp=3]
R max VNR
and for a 24 oz stick the optimal impact point is
fbo =0.225 [Mg/Mp=4]
R max VNR

This range includes most common stick weights and shows that the optimal impact point
isonly weakly dependent on the stick weight in thisrange. In both cases, the impact
point is between centerball b=0 and the natural roll height b=4sR. Theinitial cue ball
velocity is maximized at b=0, but %7 of this velocity islost upon achieving natural roll to
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diding friction; at b=75R thereis no velocity loss due to sliding friction, but the initial
velocity isrelatively small due to the energy and momentum transfer conditions between
the stick and ball. The above contact point is the optimal compromise between these two
extremes. Maximization of the natural roll velocity is the same as maximizing the natural
roll energy, and is the same as maximizing the distance that the ball rolls before stopping
dueto rolling resistance. Because this distance is maximized, this also means that the
distance isrelatively insensitive to small deviations of the contact point away from this
optimal value. Thisismost useful when cue ball placement is of utmost importance such
as, for example, during the lag shot at the beginning of amatch. Theratio VNr/Vo IS
plotted as afunction of impact parameter for some selected ball/stick mass ratios in Fig.
3.4.
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Fig 3.3. The ratio of the cue ball velocity Vy to the before-collision cue
stick velocity Vg is shown as a function of the vertical impact parameter
(b/R) for some selected ball/stick mass ratios.
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Fig. 3.4. The ratio of the final natural roll cue ball velocity VyNRr to the
before-collision cue stick velocity Vg is shown as a function of the vertical
impact parameter (b/R) for some selected ball/stick mass ratios. For a
given ball/stick mass ratio, the optimal contact point for a lag shot is
determined by the flat region near the curve maximum.
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4. Collisions Between Balls

Consider the motions of two colliding balls. One ball is assumed to be moving
before the collision, and both balls are assumed to be moving afterwards. For this
discussion, assume that the initially moving ball is the cue ball, and the initialy stationary
ball isan object ball. Asthetwo balls collide in an off-center hit, the frictional forces
acting tangential to the surfaces are relatively small (e.g. compared to the frictional forces
between a ball and the cuetip). All of the remaining forceis directed along the line
between the centers of the balls.

Fig. 4.1. Pictorial representation of the conservation of momentum vector
relation Vo=Vpt+Ve The angles C and D are supplementary and satisfy
the relation C+D=p.

Consider first the ball motions just before the collision and just after the collision;
in this situation, the friction between the cloth and the sliding/rolling balls has not had
time to affect the ball trgjectories. Linear momentum (p=MV) is conserved in both the x-
and y-coordinate directions. Represented with vectors, the vector sum of the final
momentum of the two ballsis equal to the initial momentum of the cue ball. Eliminating
the mass M of the balls, results in the vector relation V g=V+V ¢ between the initial and
final velocities. Thisrelation is shown pictorially in Fig. 4.1. The final velocity of the
cue ball V¢ has been drawn twice: once with its base common to that of the Vi, vector,
which is consistent with both balls departing from the same collision point on the table,
and again with its base at the end of the V', vector to show pictorialy that Vo=Vp+Ve.
The angles D and C are supplementary and are related by (in radians) C+D=p, and
consequently, cos(C)=-cos(D).



In addition to momentum, energy is also conserved in this collision to a good
approximation. Therelatively small amount of energy that islost is turned into sound or
heat within the balls. An elastic collision is onein which energy is assumed to be
conserved, so this energy loss will be denoted Ejnglagtic. AS discussed in the previous
sections, there are two kinds of kinetic energy, translational and rotational, associated
with each ball. Equating the energy before and after the collision gives

To(Trans) + To(Rot) = Te(Trans) + Te(Rot) + Th(Trans) + Th(Rot) + Einelastic
Collecting all the T(rot) terms together, and multiplying by 2/M givesthe relation

VG =V§ + V¢ +Dgagic +Dinelasic = Vi +V¢ +Diota
with

2
Delastic v (Tc(Rot) +Th(Rot) = Toy Rot))
2

Dinglastic = 17 Eindastic
The term Agagtic depends on the total change of rotational energy. The contribution
Adagtic May be positive, zero, or negative, but the term Ajnelagic 1S always positive, since
it represents an energy lossin the collision process. There are two types of contributions
to Ejnaastic, the first type of energy lossis due to the frictional forces of the sliding balls.
These frictional forces result in the exchange of energy between the various trandational
and rotational components. Just asin the case of the simple sliding block, the frictional
forces are intimately related to the inelastic energy loss; without thisinelastic energy loss,
there would be no dliding friction. Aswill be seen in the following discussions, this
inelastic energy loss can be determined by analysis of the resulting momentum exchange
between the balls. Other contributions to the inelastic energy loss involve the imperfect
transfer of energy between the balls. For example, the sound made by the colliding balls
represents atransfer of kinetic energy from the collision process to the surroundings.
This energy loss would occur even in the absence of sliding frictional forces. In the
present discussion, this latter type of energy loss will not be considered quantitatively in
the analysis. With this simplification, both the elastic and inelastic contributions to Atotal
are assumed to be associated with the tangential forces of sliding friction.

The law of cosines for an arbitrary triangle with sides a, b, and c with
corresponding angles A, B, and C is

¢ = a2 + b2 -2ab cos(C)

This alows the angles of atriangle to be related to the lengths of the three sides. In
particular, the sides of the triangle resulting from the pictorial representation of the
conservation of momentum relation may be related to the departure angle. Comparing
the law of cosines with the above velocity equation gives the relation

_ -Diota _
= —== = D
N VA YA I
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between the angles C and D and the change of trandational energy term Aqtg. If thereis
no trandational kinetic energy loss during the collision of the balls, then Atota1=0,
cos(C)=0, and C=p2 isaright angle (i.e. 90 degrees). In this case, the law of cosines
reduces to the familiar theorem of Pythagoras. |f C=p/2, then D=p2 and the two balls
depart at exactly aright angle. Inthisinitial discussion it will be assumed that the balls
are rotating about the vertical axes only; the more general situation is examined later. If
there is no rotational energy change during the collision, then Agagic=0. There are three
situations in which there will be no total rotational energy change during a collision.

First, if thereis no friction between the balls, then there will be no tangential forces acting
at the point of contact. Thisis, of course, an approximation, but for many shots such an
approximation is sufficient, and in any case it defines a convenient reference point. The
second situation in which no spin change occurs is when the cue ball has just the right
amount of outside spin so that the ball surfaces are not moving relative to each other
during the (very short) collision time. In this case the cue ball spin is unchanged, and the
object ball acquires no spin during the collision. The third situation in which no total
rotational energy change occursiswhen the cue ball has just the right amount of inside
spin so that all of the cue ball spinistransferred to the object ball, and the cue ball departs
with no spin. Thefirst situation isan ideal, and occurs only with no friction between the
colliding balls; Atota=0 in this case for all collision situations. The second situation is
independent of the ball friction, but depends on matching exactly the outside spin and the
cut angle; Atotai=0 for this situation since both components vanish when there is no
friction. The third situation depends on matching the amount of inside spin with the
friction between the balls and the cut angle; since there are accel erations associated with
the frictional forces, there is anonzero Ajngastic component, Agqtai* O, and therefore the
departure angle will differ from p2.

To appreciate the importance of spin transfer, consider a cut shot, with ball
friction, when the cue ball has no spininitialy. In thiscase, the Torot) term will be zero,
but both Te(rot) and Th(Rot) Will be nonzero. The cue ball acquires some sidespin by
rubbing against the object ball, and the initially motionless object ball acquires some
sidespin by rubbing against the cue ball. In this case, both Agagic>0 and Ajnaastic>0, the
angle C will be larger than p’2, and the angle of departure D will be smaller than aright
angle. In actua practice thisisasmall effect, in the neighborhood of 2-4 degrees
depending on how sticky are the pair of colliding balls, but a 4 degree angle, over 8 feet
resultsin adeviation of 6.7", or about half adiamond on a 9' table (tan(o)=d/L with
deviation angle o, distance L, and deviation distance d). When referring to the resulting
object ball deviations, this effect is called collision-induced throw, and clearly this must
be accounted for, to some extent, on any but the most trivial of shots.

| Problem 4.1: What are the conditions in which Agagic Will be positive, zero, and |
| negative? (assume al spins are about the vertical axes) |
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Answer: Substituting the rotational energy expression gives

Dgasic =% Rz(®§+w§ - 00%)
where al angular velocities are relative to the vertical axes of each ball. However, any
change of angular velocity in the cue ball must be compensated exactly by a
corresponding change in the object ball angular velocity, since the frictional forces on
each ball are equal but opposite in direction.

Wo =We - Wp .
Substitution of thisrelation gives

Delastic =§ Rwpo -
When the final spins of both balls are in the same direction (i.e. both are clockwise when
looking down on the table from above, or both are counterclockwise), then Agagic Will be
positive, cos(D) will be positive, and the angle of departure of the two balls will be <p’2.
When the final spin of either the cue ball or the object ball is zero, then Agagic Will be
zero, and the departure angle will be £p72, and the magnitude will depend entirely on
Aindastic Which is aways nonnegative. These are the only situations that result in
Adagic=0. When the final spins of the two balls are in opposite directions (i.e. one
clockwise and the other counterclockwise), then Agagic Will be negative, and the
departure angle will depend on the relative magnitudes of the two components Aglagtic
and Ainelagtic-: Note that cos(D) depends on the final spin/speed ratios of the balls, so
within the current set of simplifying approximations, the contribution of Agagtic to the
departure angle is independent of the overall shot speed.

The above qualitative analysis did not require a detailed examination of the forces
during the collision process. These forces and the resulting ball trajectories are now
examined in more detail. For this pupose, it is useful to define two coordinate systems as
shown in Fig. 4.2. Thefirst coordinate system, denoted (X',y',Z), is appropriate for the
initial cue ball velocity before the collision; the second, denoted (x,y,2) is the natural
coordinate system to describe the trgjectories after the collision. Unit vectors along these
two coordinate axes satisfy the transformation relation

& eecos(a) sin(a) 06% 0

Sje =g sin(a) cosla) 0397

éIA< G € 0 0 1ﬂél2 2
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Fig. 4.2. The effects of the diding frictional forces on the object ball and
cue ball are shown in detail on the after-collision velocity vectors. Two
coordinate systems are used in the analysis of object ball throw. The first
is relative to the initial cue ball velocity Vo, the second is appropriate to
describe the after-collision velocities. The vertical z-coordinate is not
shown, but is directed out of the plane of the figure. The angle o would be
the object ball cut angle if there were no friction.

It is convenient to take the origin of the (X,y,2) coordinate system to be the cue ball center
at the moment of contact with the object ball. With this choice, the contact point of the
cue ball and object ball lies on the x-axis. In the absense of friction, the object ball would
depart along the x-axis and the cue ball would depart along the y-axis. The frictional
forces are tangential to the point of contact, and therefore liein theyz plane. The
direction of thefrictional force is determined by the velocity of the contact point of the
cue ball at the moment of contact. The contact point velocity is the sum of the linear
velocity

Vg = Vi ¢=Vo(cos(a)i +sin(a)j)

and the angular velocity

N A A

i j k
wg Tep=Rog i =lwgy wgy oz|= R(U)Ozj - U)Oyk)
R 0 0

If the cue ball is struck with alevel cue stick (i.e. no masse), then the cue ball rotation
may be written as
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g = mgyj¢+ wgke=- w gy sin(o, a)i i +wéy cos{a)j + gk
w @, <0 for backspin, m&, =0 for astun shot, and w&, >0 for topspin. w§, =wq,

corresponds to sidespin. The resulting contact point velocity is

Vep =Vocos(a)i +(Vosin(a) + Rw, )] - Roogy cos(a )k

= chxi + chyj + chzk

It isthe sign of V¢py that determines the di rectlon of throw of the object baII Vepy >0
results in throwing the object ball in the + j direction, Vepy <O resultsin - j throw, and
Vepy =0 resultsin no throw. It isinteresting that, for agiven angle o, Vepy depends only
on the cue ball sidespin wg,. Cue ball topspin or draw does not change the direction of
throw, but it does change the magnitude of the throw.

The Vepx component of the contact point velocity is directed exactly along the

object ball center of mass. Asthe balls collide, the momentum component px=MV¢py is
transferred entirely from the cue ball to the object ball. This momentum is transferred

t
during the very short collision timet according to the equation pgy = (‘aFX(td)dto. If

there are any tangential components of the contact point velocity, then at any time during
the collision there is atangential frictional force with magnitude given by

Fa (t) = uppFy(t) where upp isthe ball-ball sliding coefficient of friction. The direction
of thistangential force is determined by the tangential components of the contact point
velocity. A unit vector in this tangential direction may be defined as

& = Vopr _ Vpri - quzi:<
Veor|  [Vepyl - VopeH|

(Vosin(ct) + Rwoy)j - Ry cos(a)k
- ?V ) 2 2 (.jyz
s(Vosin(a)+ Rwo, )"+ (Rw@y cos(a)) e
= cody)j +sin(y )k
with obvious definitions for the horizontal component cos(y) and vertical component
sin(y). The vertical component of thisforce direction sin(y) either worksin conjuction or
opposition to the weight of the ball; it does not affect the direction of the cue ball or
object ball velocitiesin the plane of the table after the collision. However, the horizontal
component of the force cos(y) does affect the object ball direction. It isthis horizontal
component of the force that resultsin the object ball throw. Fig. 4.3 shows the possible
combinations of directions for the unit vector e. and the geometrical meaning of the
components cos(y) and sin(y). The factor cos(y) may be thought of as a geometrical
efficiency factor in converting the frictional forces into throw velocities.
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Fig. 4.3. The unit vector e~ , pardlel to the direction of the dliding
frictional force on the object ball, is decomposed into the horizontal and
vertical components characterized by the angley. Thisforce is applied to
the object ball at the contact point, and an opposing force is applied to the
cue ball. This force is tangential to the ball surfaces and lies in the yz-
plane. The direction of the unit vector depends on the cut angle and the
spin axis of the cue ball at the moment of the collison. The object ball
throw is proportional to the horizontal component of the frictional force.

The object ball throw is determined by the y-component of the frictional force.
Substitution of the above decomposition of es givesthe relations

K €
Poy = @ Fry (t9dte= cos(y )upp @ Fx (19dt¢=cos(y )upnPox

Viy = cos(y ) pbViox
The horizontal component of the tangential frictional force resultsin the throw velocity
Viy being added to the object ball velocity, and the opposing frictiona force actsto
subtract exactly this velocity from the post-collision cue ball velocity. Because the factor
cos(y) depends on several parameters, it is useful to consider some special cases.

| Problem 4.2: How does the throw angle e defined by tan(€)=Vp,/Vpx, depend on overall |
|shot Speed? |
| Answer: Rewriting the cos(y) expression in terms of spin/speed ratios gives |
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(Si n(a) + R$O°Z )

cos(y) =

26}/2

; Rwo, 2 @U‘)&y 0=
fort+ S+ oot}

The geometrical factor cos(y) is seen to depend entirely on spin/speed ratios, not overall
shot speed. The throw angle is e=arctan(Vhy/Vpx)=arctan(uppcos(y)). The velocity ratio,
and therefore the throw angle e isindependent of the shot speed. In practice, thisresult is
not entirely true; the throw angle decreases slightly for very hard shots. This change of
throw angle with shot speed is due to a slight speed-dependence of pupp. Fig. 4.4 shows
the dependence of the object ball throw factor cos(y) as afunction of the sidespin/speed
ratio (Rwoz/ Vo) for a specific cut angle of p/6 (ahalf-ball cut) for several values of the
topspin/speed ratio.

Problem 4.3: For astun shot, »§y,=0, how does the throw velocity depend on the cue

ball cut angle o.?
Answer: For a stun shot, the cos(y) factor reduces to the form
cos(y) = Y. = (Vosin(a) + Rog, )

|chy| |V0 S n(a) + RwOZl

The sign of the cos(y) factor is determined by the initial velocity component, the cut angle
o, and the sidespin wgz. The throw velocity is then given by

Vby = *itbb Vix
If the cue ball has no sidespin, then cos(y)=+1, and Vpy = uphVpx for the shot angle in Fig.
4.2. Thisresult was assumed in P1.6, as away to determine upp, but it is now seen with a
careful analysis that this assumption was indeed correct [provided the frozen object ball
acts the same as a stun-shot collision]. The only dependence of the throw velocity on the
cut angleisin thedirection of the frictional force. Fig. 4.4 shows the dependence of the
object ball throw factor cos(y) as afunction of the sidespin/speed ratio (Rmgz/ Vo) for a
stun shot. Thereis an abrubt change in value as V¢py changes sign.

=1 [for w@,=0]

Problem 4.4: For anatural roll cue ball, Rwgy=Vo (or areverse natural roll cue ball,
Rw @, =—Vo) how does the throw angle depend on the cue ball cut angle o.?

Answer: For anatura roll cue ball, the cos(y) factor reduces to the form

® .
Csin(a) + %9

e (%]
cos(y) = > 0 7 [NR or RNR]
Be  Rug,s 6
cGsin(a) +— 22+ cos(a)+

In Fig. 4.4, thisfactor is plotted as a function of sidespin/speed ratio for a specific cut
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|ang|e o=p/6. Thethrow angleis determined by e=arctan(uppcos(y)). Although the slope |

| is steepest in the region near V¢py=0, the slope is not as steep in this region as that for |
|sma||er values of [Rw @, /Vol. |

Object Ball Throw Factor
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Fig. 4.4. The object ball throw factor cos(y) is shown as a function of the
cue ball sidespin to speed ratio (Rwgz/Vo) for selected values of of cue ball
topspin/draw. The slope of the given curve determines how sensitive is
the object ball throw to small variationsin the sidespin.

In practice, it isimpossible to achieve an exact stun shot. There will always be
some small value of w@,. Similarly, the quantity Vcpy=(Vosin(a)+Rwoz) will never be
exactly zero; it may be very small, but it will never be exactly zero. Thisleadsto the
guestion of how the throw angle depends on small variations from these limiting
conditions. The answer is that the direction of the unit vector e. becomes very sensitive,
rotating wildly even with very small changesin the cue ball spin. Both the numerator and
the denominator of the components become small, but without a definite limit.

Therefore, the cos(y) factor can vary between —1 and +1, and the throw velocity can vary
anywhere between —ippVpx. and +uppVpx. For small values of oy, the slope of the

cos(y) curve becomes very steep; this steepness reflects the sensitivity of the object ball
throw to the sidespin. This correlation of steepness of slope with small g, values may

be seenin Fig. 4.4. Thisslope reflects the sensitivity of the throw factor cos(y) with
respect to changesin the sidespin. The sensitivity of the throw factor with respect to
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changesin the topspin is related to the derivative of cos(y) with respect to the other
spin/speed ratio (Rw &, /Vo).

Problem 4.5: What is the sensitivity of the object ball throw with respect to both
components of the cue ball spin?

Answer: It is conventient to characterize the sensitivity in terms of the spin/speed ratios
Jo~(Rwoz/Vo) and Joy=(Rw'oy/Vo). The sensitivity of the throw factor to the cue ball spin
is characterized by the derivatives

doos(y) _ - (sin(c) +Jo7)Joy 005° (1) .
dJOy Z?S' n(a) +‘]OZ)2 N (JOy COS(O())Zg 2
dcos(y) _ (J0y costa))?
dJo %

Nain@) +3o2)” + (Joy cos(oc))zg

The first equation gives the sensitivity of the throw with respect to changes in the topspin
or backspin of the cue ball, the second equation gives the sensitivity with respect to
changes in the sidespin. When Joy is small, then the slope of the cos(y) factor is
approximately

2
deos(y) (JOyCOS(a))
do;  |sin(c)+ Jog|°
This shows why the slope of the cos(y) curve becomes essentially vertical in Fig. 4.4 as

the sidespin Jo; passes through the zero point of Vpy and the denominator of this
component of the sensitivity vanishes.

[for smallJoy]

A combined measure of the sensitivity of the object ball throw to the cue ball spin
may be defined as

.2 2
F(Jg) = E%COS(Y)Q L &cog(v)d
7V\E dloy & € dX, @

For values of Jg that correspond to small F(Jp), the player is alowed larger margins of
error in shot execution (e.g. in the accuracy of the cue tip contact point) and in judgement
(e.g. in estimating, and compensating for, the object ball throw). Regionswith large
F(Jo) are those where very small spin variations result in large changes in the object ball
throw; these are the regions that the player should try to avoid. Fig. 4.5 shows a contour
plot of the sensitivity F as afunction of the two components of the cue ball spin, Jo, and
Joy, for the same cut angle as was used in Fig. 4.4, namely o=p/6 (a half-ball cut). It may
be observed that the regions of least sensitivity are those with small Joy (i.e. closeto
being a stun shot), and large sidespin |Joz | (i.€. corresponding to extreme underspin or
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overspin). Regionsof high sensitivity are seen to correspond to V¢py=0 (i.€. to
Jo~=-sin(a))=-Y5). The highest sensitivity contours correspond to the region near the point
Vepy=0 and Joy=0; amagnified view of thisregionisshownintheinsetinFig. 4.5. The
sensitivity of the throw angle becomes enormous in thisregion. Ironically, the spin
combinations that result in the smallest object ball throw sometimes correspond aso to
the largest sensitivity, and the spin combinations that result in the largest throw
sometimes correspond also to the smallest sensitivity.

With this sensitivity in mind, it is possibly awise tactic to avoid these conditions
so asto avoid the large uncertainty in the throw angle. That is, stun shots with outside
spin should be avoided, according to this argument, when the effects of throw might be
critical to the success of the shot. This uncertainty may be avoided in practice by
ensuring that the numerator or the denominator (or both) are significantly different from
zero at the moment of collision of the cue ball with the object ball. This may be done for
agiven shot either by avoiding stun-shot spin (i.e. ensuring wdy* O thereby reducing the
magnitude of the cos(y) factor), or by avoiding the V¢py=0 condition (thereby producing a
predictable, although nonzero throw), or by avoiding both simultaneously.

It should be pointed out that this recommendation is somewhat contrary to that

given by some other players, teachers, and authors. Their argument is that minimizing
the Vepy factor will minimize the throw. Asseenin Fig. 4.5, thisisonly trueif [w@y |

differsfrom zero and is large compared to [V¢py|. In practice for some types of shots, it
may be easier to avoid the V¢py=0 combinations of speed and sidespin by intentionally
overspinning or underspinning the cue ball, and to account explicitly for the throw by
adjusting the aim point. This approach might be preferable in situations where stun-shot
spin is necessary for position. Examples of this compensation are described in the
following problems. Another complicating factor is the seemingly random phenomenon
called skid (also called cling or kick). Skid occurs when asmall piece of chalk or dust is
trapped between the contact point of the balls, increasing dramatically the coefficient of
friction for that particular shot. When this occurs, the amount of throw associated with
nonzero Vepy is very unpredictable.

Problem 4.6: For anatural roll cue ball (or reverse natural roll cue ball) with no
sidespin, wpz~=0, how does the throw angle depend on the cue ball cut angle o?
Answer: From P4.4, the cos(y) factor reduces to the form

sin
cos(y) = (Sin(c) = sin(a) [NR or RNR with o0,=0]
(si n(e)? + COS(OL)Z)
The throw angle is determined by e=arctan(uppcos(y))=arctan(uppsin(c)). The throw

depends only on the cut angle .. It isO for astraight in shot («=0), and increasesto a
maximum value for very thin cuts (o»n/2). The impact parameter for the cue ball/object




| ball collision is bpp=Rsin(a). This allows the factor cos(y)=bpy/R to be easily determined |
|geometrical|y for any given cut shot with natural roll and no sidespin. |

Object Ball Throw Sensitivity
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Fig. 4.5. A contour plot of the sensitivity of the object ball throw factor
cos(y) is shown as a function of the cue ball sidespin to speed ratios
Jo~(RwoA/ Vo) and the topspin-draw spin to speed ratio Jo,=(Rw'oy/V0).
Adjacent contours differ by a factor of two in the sensitivity function
F(Jo). Theinset figureisan expanded view of the small region near Jo,~0
and chy:c)

Based on these considerations, the following procedure may be used to adjust for
object ball throw for natural roll shots with no sidespin. (1) Determine ppp using the
procedurein P1.6. This only needs to be done once for a given set of balls. (2) For the
particular shot of interest, estimate the distance D from the object ball to the pocket; the
corresponding maximum throw distance will be uppD. (3) For the zero-friction cut angle
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for the particular shot of interest, estimate the impact parameter for the ball-ball collision,
and theratio bpp/R. (4) Multiply the maximum throw distance puppD by the impact
parameter ratio bpp/R, and call theresult s. (5) Imagine a point that is displaced by the
distance s from the pocket target, and aim for this offset point asif there were no throw.
For an example of this procedure, assume that upp has been determined for the set
of ballsasin P1.6 to be 4/72. For the shot of interest, the distance from the object ball to
the pocket is 36". The maximum throw distance for this shot is (4/72)*36"=2"; that is,
half the reference shot distance results in half the maximum throw distance. Suppose that
the shot of interest is almost straight-in, aslight cut to the left, with bpy/R=Y4. The offset
distance is given by s=¥4*2"=1,". Now adisplaced point ¥>" to the left of the pocket
center is used as a corrected aim point. Thisaim point isvalid for either natural roll or

reverse natura roll. With alittle bit of practice, these estimations become second nature
and may be done aimost instantaneously. For other @, spin combinations, the offset

point will be displaced from the target pocket somewhere between the maximum value of
2" (appropriate for a stun shot) and the natural roll value of ¥2", but the offset aim point
will always be on the “overcut” side of the pocket center. Experienced pool players know
to “cut ‘em thin to win” when the balls are sticky, and the above procedure quantifies just
“how thin” is“thin” to achieve the most consistent results.

The use of sidespin also requires further adjustments to the above procedure, but
this requires even more judgement on the part of the shooter. One way to adjust for
sidespin is to estimate mentally the cos(y) factor by imagining how the cue ball will be
spinning at the time of contact. Replacing the cue ball with a striped ball, and practicing
various combinations of topspin, draw, stun, and sidespin will help the player develop
this estimation skill. 1n general, the offset point will always be displaced |ess than the
maximum value determined by uppD. Of course, small ppp values mean that any errors
made in the estimation of the cos(y) factor result in smaller errorsin the object ball
tragjectory. Sticky ballswith large upp are very challenging. One of the challenges faced
by tournament playersis the accurate adjustment to different sets of balls, each with
different upp, as they move from table to table in the tournament matches.

Problem 4.7: What isthe resulting object ball spin wp dueto the frictional force Fa (t)?
Answer: The angular acceleration is given by the equation r © F =1 o . Integration of the
force over the contact time gives

op =27 Q1 Fr (t0dte= T (cos(y)j +sinly K )y (19

_ 29U Vb (o )] »
=& (- siny)j + cogy k)

Problem 4.8: What is the relation between the natural roll spin axis and the object ball
throw angle? (For simplicity, ignore the effects of the vertical friction components during
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the cue ball and object ball collision.)

Answer: Since both the object ball sidespin and the object ball throw angle are caused by
the same frictional force, the magnitudes of these two effects are closely related.
Immediately after the collision with the cue ball (and ignoring the object ball spin due to
the vertical friction components), the object ball linear velocity and angular velocity
vectors are given by

Vi =Vl +Vipy] = Vil + i €YY )V pyd = Vi
_ @Buphcos(y Vi oy
e 2R %)

with tan(e)=uppcos(y). After achieving natural roll, the object ball linear and angular
velocity vectors are

VR = 3V

OpNR = Op +2b W

2R

where the unit vector éb,\ =k’ éo isthe horizontal vector perpendicular to the object
ball velocity. The angle of the natural roll spin axisisrelated to the components of the
spin axes according to

tan(p) =22 = - Sy __ Ttan(e)

®p :(l)bzlz =

= - Lain(e)

07 R 21+ tan?(e) 2
For the typically small object ball throw angles, the approximate relations

B»-de»-Fugcosy) [for small €]

show that the natural roll spin axis tilt angle is about 3%, times larger in magnitude than
the corresponding object ball throw angle, and that both angles are approximately linear
with respect to the ball-ball friction coefficient. Thisaxistilt is most easily observed by
viewing the rolling object ball from directly behind its path and by noting the equivalent
tilt of the stationary rotational equator. The relation between the spin axis and the
rotational equator is shown in Fig. 4.6. Thisaxistilt may be used to give the player
additional feedback in adjusting the compensation for object ball throw on cut shots.

PA.7 gives the resulting object ball spin if the frictiona force acts on the ball
without opposition. During the collision, in order for a horizontal component of angular
acceleration to occur, the ball-ball friction must act simultaneously with the ball-cloth
friction. It will be assumed hereafter that the ball-cloth friction isinsignificant during the
collision time, and its affects will be ignored. The practical accuracy of this
approximation may be estimated by the following considerations. A typical collision
time ist=0.0001s, and atypical object ball velocity is Vpx=100in/s. The average impact
force is then given by Fayg=MVpy/t. The dliding frictional force of the ball on the clothis
given by Fs=usMg. Theratio isgiven by Fg/Fayg=usgt/Vpx. Assuming aball-cloth
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Fig. 4.6. The relation
between the tilt of the spin
axis o and the rotational
equator is shown
pictorially as viewed from
the rear of a naturaly

] rolling ball. For an object
Botational ball, the angle B of the tilt
Equator of this axis is
- approximately 7, times
larger in magnitude than
the object ball throw angle.

sliding coefficient of friction us=0.1, thisratio is F¢/F4,5=0.0000386. Therefore, the ball-
ball frictional forces do indeed dominate the ball-cloth frictional forces during the
collision.

The treatment of the vertical acceleration due to the vertical component of the
frictional force is somewhat complicated. The table surface prevents any vertical
acceleration in the downward direction. The weight of the ball opposes any upward
frictional force, but it doesn’t prevent upward acceleration. Therefore, during the contact
period, if the ball is on the table surface and (F~ ~MQg) is negative, resulting in a
downward net force, thereis no acceleration at that instant. But if (FA ~MQ) is positive,
then that upward force resultsin vertical acceleration of the ball off the table surface. If
Mg is neglible compared to alarge positive Fa ; then the maximum vertical velocity
immediately after the collision would be the same as the maximum throw velocity; the
maximum angle that the object ball departs from the table surface would be the same as
the maximum horizontal object ball throw angle. With the average impact force given by
Favg=MVpx/t and the downward force of gravity given by Fgra=Mg, thentheratio is
given by Fgrav/Favg=gt/Vpx. For thetypical shot considered in the previous paragraph,
the numerical value of thisratio is Fgra/Favg=0.000386. Therefore, the ball-ball
frictional forces also dominate the gravitational forces during the collision.

Problem 4.9: A cue ball with backspin strikes an object ball straight on. Assume the
gravitational force on the ball is negligible during the collision, a shot speed of 36"/s, and
Uph=4/72 asin P1.6. What height does the object ball achieve over the table, and how far
away from the starting point doesit land?
Answer: The vertical velocity is given by

Viz = tbbSiN(Y) Vix
For a straight on shot with backspin, sin(y)=+1 and the entire frictional forceis directed
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upward. Vpz =(4/72)36"/s=2"/s. The height of the ball trajectory above the table is given
by

Z=Vpzt - Yogt2 = (2"/9)t - ¥»(386"/s?)t2
The maximum height is achieved when dz/dt=0. This occurs at tmax =VbZ/9=UbbVox /0.
The time to achieve maximum height is linear in the coefficient of friction upp and in the
shot speed Vpy .

tmax =Vbg = 2/386 s= 0.00518 s
The height achieved at thistimeis

2 2\/2
Zmax= Vboz tmax - ¥20tmax 2 = Vbr _ bV
29 29
= (2/386)" = 0.00518"
The maximum height achieved is proportional to the square of the coefficient of friction
and to the square of the shot speed. The ball returnsto the table at the time (2tax ). At
thistime, the horizontal distance traveled by the ball while airborneis
_ _ 2upVix
X=Vox (Zmax ) = — ——
= 36"(2)(2/386) = 0.373"
The horizontal distance of the jump is proportional to the coefficient of friction and to the
square of the shot speed. Due to the very short times and small distances that the object
ball is airborne, this jumping effect can be neglected, for the most part, during play.

One point to notice in P4.9 is that while the object ball has a vertical momentum
immediately after the collision, the cue ball is constrained to the table surface. If the cue
ball strikes the object ball with topspin, then it is the cue ball that |eaves the table and the
object ball that is constrained to the table surface. In either case, the vertical component
of the linear momentum is not conserved by the balls during the collision. The reaction
of the downward-directed ball is absorbed by the table. If the table had been considered
to be part of the system, then linear momentum would have been conserved in the
analysis. In thisrespect, the nonconservation of linear momentum in the vertical
direction is an artifact of the formal separation between the “ system” and the
“surroundings” in this simple analysis.

Problem 4.10: Using the velocity and spin results from P4.2-P4.7, compute the total
kinetic energy before and after the collision. Determine Ejnalasic. (For simplicity, ignore
the velocity and spin resulting from the vertical components of the frictional force.)
Answer: Thetotal kinetic energy immediately before the collision is

To = To(rrang + To(Rot) = 3MV4 +3 10
The kinetic energy immediately after the collision is
2, \2 2, 2
Tr=4M(VZ+V3)+ 3 1{0Z +wf)
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Writing al of the friction-dependent contributions in terms of i,y gives
Viy = tp COS(y Vpy = tph cos(y )Vgcos(a:)
Vb :VOCOS(OL)i +bej

A

Ve =(Vosin(a) - Viy)]
- BVpy
2R

Op = R

A A 5V~
w¢ = 0 + 0y = - 0y sin(a)i + wg, cos(a)] +§DOZ - Zlgygk

Substitution into the kinetic energy expression gives
Tf = TO + M(- be(Vosin(O() + RU‘)OZ) + —;ng)

_ 2
=T+ M ( ViV epy +;vby)
The kinetic energy change Ejneastic 1S given by
Eindasic = To - T = M(be(Vosjn(a) + Rwgg)- %ng)

= M(bevcpy - %Vt%y)
The friction allows for transfer of energy between the trandational and rotational degrees
of freedom, but only at acost. Thisis consistent with the effect of ball-cloth friction on
the kinetic energy as discussed previously. Inthe expressions above, Vcpy isthe
horizontal tangential component of the contact point velocity of the cue ball at the instant
of collision. Vcpy determines the direction of the frictiona force on the object ball and
therefore has the same sign as Viy. The lowest order term in ppyp, in the loss of energy due
to friction, MVppyVepy, is positive. The second term, which is second order in upp and
therefore in general much smaller in magnitude, is always negative.

Problem 4.11: Determine Agasic » Ainelastic; @d Atotal in terms of V. What are these
quantities when Vpy =0?
Answer: From P4.10, Ajnelastic 1S given by
_2 _ 2
Dinelastic = 1 Einelastic = 2VbyVepy = Voy
Generalizing the approach of P4.1 for arbitrary cue ball spin g,

Duesic = 3 RE(0Z + 08 - 08)= 3R¥(0Z +0B- (¢ - @) - o))
_4p2
_ER W, X0y
=- 2Rwg,Vpy +5VE

: 2
Dtotal = Detastic + Dinelastic = 2VpyVo SiN(at) - 2V
In genera Ayota IS aquadratic function of the ball-ball sliding coefficient of friction upp.

50




In the special case of Vpy =0, then also Vipy=0 and Aota) Vanishes, indicating that the
departure angle of the cue ball and object ball is exactly aright angle.

Theinitia velocity of the cue ball immediately after collision is given by
Ve = (VO sin(a) - be)] . The magnitude of this velocity depends on the object ball
throw, but its direction isindependent of any frictional forces. If the cue ball has no spin
about the horizontal axis (i.e. only sidespin, no backspin or topspin), then thisinitial
direction is unchanged by the dliding friction of the cloth. The cue ball will slow down
upon achieving natural roll, but the velocity direction will remain unchanged. Inthis
sense, the trgjectory of the cue ball after the collision is less dependent on the ball-ball
coefficient of friction upp than the object ball trajectory. This observation is useful in
judging and executing accurate stun shot caroms.

Exercise 4.1: Experiment with stun shot caroms. Begin by placing the cue ball afew
inches away from the object ball, and cueing exactly in the center. The cue ball should
not curve after the collision. Mark the position of the cue ball center at the collision point
and the two contact points where the balls touch the cushions. Measure the angle and
determine how close is the departure angle to aright angle. Include shots with sidespin to
determine the effects of Atgtg ON the departure angle. With some practice, stun shot
caroms can be executed very accurately. Stun shot caroms are particularly useful in
9-ball.

Problem 4.12: Determine the total angular momentum immediately before and after the
collision relative to the point that corresponds to the cue ball center at the moment of
collision. Isangular momentum conserved? (ignore the linear velocity components due
to the vertical frictional forces)

Answer: There are two contributions to the total angular momentum. Oneisthe

rotational contributions of the balls spinning about their centers, L¥N = g , and the
other isthe orbital contribution of the centers of mass moving about the point of origin,
LoDt = 1 p. Beforethe collision, these contributions are
bit . ,
L™ =ro(t)" pot) = (Vot) " (MVg)=0
LI =1 0g
bit i

Lo=LO™ +LF" =1 o
After the collision the contributions are

LE =1 (0) pp(t) = (2RI +Vyt) " (MVy)

= 2MR(i " V) = ZMR(T’ (vaf+vby]')) = 2MRVjy,k

A

:-2|(Dbzk
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LM =1 oy
LYP =1 ) pe(t) =(Vit)” (MVp)=0

LSC|Oin =lowe= I((oo +mb)

L = L(();rbit +I_s(|:oin +L%rbit + Lsg))in =1 0 +2|(Dby]
Thetotal angular momentum difference before and after the collision is then
L - Lo =2lwpyj

Thetotal angular momentum is always conserved except for the horizontal component

about the y-axis, which is conserved only when wpy=0. This component arises from the
vertical frictional force during the collision, and vanishes only when wgy =0 (i.e. for stun

shot collisions). The vertical component of angular momentum is always conserved, asis
the other horizontal component about the x-axis; the orbital angular momentum arising
from the object ball throw compensates exactly for the change in the spin angular
momentum. This compensation cannot occur for the vertical frictional force because of
the constraint of the table surface. In the above equations, the vertical linear acceleration
was neglected, but even if it had been included for the jumped ball (as determined in
P4.9), the corresponding contribution from the nonjumped ball during the collision is
eliminated by the table surface. Indeed, as discussed previoudly, because the vertical
components of linear momentum are not conserved in the collision, it should not be
expected that the angular momentum components due to these same frictional forces
could be conserved using the same simple analysis.

In the previous few problems, various aspects of object ball throw have been
examined. The object ball throw affects the trgjectories of the ballsimmediately after the
collision. The behavior of the balls after the collision is determined by both the initial
post-collision conditions of the balls and by the action of the cloth friction on the sliding
balls which was discussed in some detail in the previous sections. The results of the
present section heretofore, involving ball-ball interaction will now be combined with the
results of the previous sections to examine the behavior of the sliding balls as afunction
of the collision conditions, and eventually, as a function of the tip-ball contact point. In
the following discussions, object ball throw will be largely ignored in order to simplify
the derivations. In most cases, the effects of object ball throw may be included, at the
cost of some additional complexity, but this adds relatively little to the basic
understanding of the situations. The first situation to be considered is the behavior of a
natural roll cue ball after collision with an object ball. This special caseis particularly
central to pool and billiards because of the special importance of natural roll.

| Problem 4.13: What is the angle of deflection of anatural roll cue ball as a function of |
|the object ball cut angle after the collision and after natural roll is achieved by both balls’?|
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(ignore friction between the balls)

Answer: With no ball-ball friction, theinitial cue ball deflection directionisp/2 (90
degrees) from the object ball cut angle. In terms of unit vectors it and ]c inthex andy
coordinate directions respectively in Fig. 4.2, theinitial velocity vectorsimmediately
after collision are given by

Vi =Vgcos(ar)(cos(a)i¢- sin(a)jd
Ve =Vosin(a)(sin(a)i¢+ cos(a)jq .
The cut angle o is the angle between vectors Vp and V. Thereisno initial object ball

angular velocity immediately after the collision, so only the speed changes and not the
direction upon achieving natural roll. Thefinal natural roll velocity is given by

ViNR =5 Vb = $Vo cos(a)| cos{ar)i ¢+ sin(a)]{ -
The situation is somewhat different for the cue ball. The cue ball has natural roll before
the collision, Vo= Rw @, and this angular velocity is unchanged by the collision with the
object ball. The ball-cloth friction from thisinitial angular velocity creates aforce
component in the i¢ direction only. Thefinal velocity vector for the cue ball is

> . 2 n . "

VR = 9V +§Vgie= ($Vosin? (o) + Vg )i+ (§Vosin(e)cos(a) it
The cue ball deflection angle 0, relative to the velocity vector Vg, after natural roll is
achieved, is deterr_ni ned by

tan(0) = sr.1(on)cos(ozc)
sin“(a) +£
Immediately after the collision, the cue ball path is a parabola as determined in P2.3. The
frictional force accelerates the cue ball until natural roll is achieved. At the point that
natural roll is achieved, the cue ball rollsin a straight line with no acceleration. The
angle between this straight line and the initial velocity direction Vg is the deflection angle
0 which satisfies the above equation.

Problem 4.14: Show that tan(a +0) = 5 tan(a)
tan(a) +tan(0) with
1- tan(a)tan(0)

Answer: Using the tangent addition relation tan(a. +6) =

tan(a) :%z)) and tan(6) :% gives
5
sin(oc)(sinz(oc) + co2(a) + 125)
tan(o. +0) = =5 tan(a)

?23 cos(a.)

Problem 4.15: What cut angle oo maximizes the natural roll deflection angle 6?
Answer: Rewrite the above expression as 6 = arctan(-ztan(oc)) - a . Differentiate with
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respect to o to obtain

do___ 14
do. 4+ 45sin“(a)
Setting the derivative to zero and solving for o gives
. &f20 T
= arcsing—+=0.49088 = =28.125d
*(Orma) €30 6309 | o

Note that thisisjust abit thicker than a half-ball hit, which isap® or a 30 degree cut
angle (neglecting collision induced throw).

Problem 4.16: What is the maximum deflection angle 6 for a natural-roll cue ball
collision?
Answer: Substitution of g ) gives

Omax = a’C"a”(’Eta”(“(em))) " (O )
=< - 2 )=058903 = —
2 mex 5.3335
Thisisvery useful to know because a natural-roll cue ball carom at thisangleis
intrinsically more accurate than a cut shot with the same cut angle as demonstrated in the
following problem.

[= 33.749 deg]

Problem 4.17: If the object ball is cut about 2 degrees away from that corresponding to
the maximum deflection angle as determined in P4.15, what is the change in the cue ball
deflection angle?
Answer: If the cut angleis 2 degrees less, then

6 = arctan( §tan(26deg)) - 26deg = 33.64deg

which is 0.11 degrees away from the maximal value as determined in P4.16. If the cut
angleis 2 degrees more, corresponding to a half-ball hit of 30 degrees, then

6 = arctan(§tan(30deg)) - 30deg = 33.67deg
which is 0.08 degrees away from the maximal value. In both cases, the cue ball
deflection angle is much more stable to small deviations than the object ball cut angle.

Problem 4.18: What is the relation between the cut angle o and the natural roll deflection
angle 0 for small cut angles o?
Answer: For small angles (measured in radians), tan(x) » x. Therelation,

tan(a. +0) =5 tan(a), from P4.14 then gives
0 »3a [for small a].
Thisrelation is useful to know when playing position using natural roll on nearly straight-

in shots. Itisdifficult to achieve alarger amount of topspin than Vo=Rwg with adirect
cue-tip/cue-ball shot due to the risk of miscue (see P1.7). However, higher spin/speed




ratios can be achieved with carom shots. A higher spin/speed ratio would result in a
smaller factor than that in the above equation.

Problem 4.19: What is the cut angle o at which exactly half of the kinetic energy of a
natural-roll cue ball is transferred to the object ball? What is the corresponding natural
roll deflection angle 6? At thisangle, what are the final kinetic energies of both balls?
Answer: When the cue ball has natural roll, Vo=Rwo, the total kinetic energy is
T=3MVE +3 10 =5 MV§
The energy of the object ball immediately after collisionis
Ty = 3 MVE = 3 MVE cos?(a)
Setting Tp=Y>T and simplifying gives
o) = arccos(\/% ) = 0.57964 = 5_47;99 [=33.211 deg]
This angle is unchanged as the object ball achieves natural roll. The corresponding
deflection angle after natural roll of the cue ball is achieved is

- X 5 _ -
Therelation 7/2tan(a 1Ty) = tana 1 O usedto simplify the above expression, may be
T e~ (5Te

verified using the tangent addition formulain P4.14. Therefore, when the final deflection
angles are equal for both balls, then each ball has the same kinetic energy immediately
after the collision. Note that the cut angle at which this occursisjust a bit thinner than
that for ahalf-ball hit (which would be 30 degrees, neglecting collision induced throw).

The final object ball and cue ball kinetic energies, using Vp Nr @nd Ve Nr from
P4.13 are

— 2 — 25
Th,NR =3 MViNR = To(fg cos’ (a))
TenR = 3MV2 R = TO(%gsin“(a) +20sin%(a) + £ + ggsin“(a)cosz(a))

where Tg isthe initial cue ball trandational energy. These relations are satisfied for any
cut angle a.. Substitution of COSZ(OL( _1T)):7/10 and sinz(a( _1T)):3/10 for the specific half-
2 2

energy cut angleresultsin
_ _5
ToNR=TeNR=14T0 -

Not only isthe energy divided equally between the two balls upon collision with a cut
angle of 1Ty but the final energies of the two balls are equal after both balls achieve
2

natural roll. The distance that aball rolls after achieving natural roll, neglecting
subsequent cushion and ball collisions, is directly proportional to the natural roll kinetic
energy. Thisrelation isuseful in situations in which it is necessary that both the object
ball and the cue ball roll the same distance, and as a point of reference when unequal
distances are required.
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In Fig. 4.7 the deflection angle 0 of anatural roll cue ball, as determined in P4.13

and P4.14, is plotted as a function of the object ball cut angle o.. Also shown on the same
0 nr

graph isthe derivative curve (d—da—) as determined in P4.14. The points on this curve
corresponding to a half-ball hit, the maximum deflection angle g, . ) from P4.14,

and the deflection angle corresponding to splitting the kinetic energy as determined in
P4.19, are also plotted. The derivative curve is monotonic in the range shown in Fig. 4.7
(in general, it is an even function, symmetric about o=0). The derivative curve starts with
avaue of % at a=0 (see P4.15), decreases to the value of zero at o, ) andthen

approaches its asymptotic value of -7 as the cut angle approaches p/2. Another point of

interest shown in Fig. 4.7 is the value of the cut angle o at which the slope (igaﬂ{) has a

value of one. Thisoccurs at o j=arcs n(, / }/15) =.26116 [=14.963 deg]. For cut angles

de NR

aOL
object ball trgjectory to small variationsin the cut angle. However for the rest of the

less than ocrit, >1 and the natural roll cue ball trgjectory is more sensitive than the

range of cut angles, |Eg$ <1 and the cue ball tragjectory is less sensitive than the object

ball trgjectory. Lesssensitivity meansthat it iseasier for the shooter to control, and this
may be used to advantage, for example, in placing the cue ball more precisely in position
and safety play.
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Fig. 4.7. The post-collision natural roll cue ball deflection angle is shown
as afunction of the object ball cut angle. The OnRr curveis applicable
when the cue ball has natural roll before the collision. 6gyn, iswhen the
cue ball has no spin before the collision. OrnR is when the cue ball has
reverse natural roll before the collision. The straight line 6=o corresponds
to an equal splitting of the kinetic energy after both balls achieve natural

roll. Also shown isthe dashed curve defined by (%&‘—R). Severd

important individual points on each of these curves are also shown as
discussed in the text.
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Problem 4.20: If the cue ball is not rotating upon impact with the object ball (a stun
shot), at what cut angle o is half of the kinetic energy transferred? What are the final
energies of the balls? (neglect any frictional forces between the balls)
Answer: Taking the velocitiesimmediately after the collision from P4.13, the initial
kinetic energies are

Ty = 3 MVE =3 MV§ cos?(a)

Te =3 MVZ = 3 MVGsin?(a)
Equating these two energies gives

tan®(a) =1

o = arctan(l) = % [= 45 deg]

Each ball hasinitially after the collision an energy of ¥»Tp. Since neither ball has any
angular velocity immediately after the collision, both balls slow down upon achieving
natural roll by 97 of the initial ball velocities. Thereis no change of angle, since the
velocity directions of the balls do not change. The natural roll kinetic energy of each ball
isthen (¥2)(97)2T0=(%¥9g) To. Compared to the results of P4.19 involving natural roll of
the cue ball, it is seen that the cut angle is thinner and that the final energies of both balls
are smaller relative to Tg with a stun shot than with natural roll. This half-energy cut
angle point for stun shots is shown on the Ogn curvein Fig. 4.7. The Ogyn curveisa
straight line that ranges from the limiting values of Ogyn=p/2, at cut angle a=0, to
Ogun=0, at a=p/2.

Problem 4.21: What isthe natural roll cue ball deflection angle as a function of the cue
ball spin moy at the moment of collision and the object ball cut angle?
Answer: Generalizing the results of P4.13, it is convenient to write the natural roll cue
ball velocity in terms of the spin/speed ratio Joy.=(Rwoy/ Vo).
- .2 - . >

Venr =3V +%V0J0yl ¢= %VO(sm (o) +% Joy)l ¢+3Vo(sin(a)cos(a))j ¢

The cue ball deflection angle is determined by the ratio of the two components.
sin(o)cos(a

tan(0) = — 2( ) 2( )

sn(a) + £ Joy

Using the tangent addition relation, this may be written as

& +£ Jg, 0
tan(a +0) =¢—>—=+tan(a)
e tdoy @

For the natural roll condition, Joy=+1, these results al agree with those of P4.13-P4.14.

Problem 4.22: In P4.19 and P4.20 it is seen that a particular cut angle splits evenly both
theinitial kinetic energy and the natural roll kinetic energies of the two balls. Under what
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conditions will a cut angle split both energies? (assume wz=0)
Answer: Half of theinitial kinetic energy istransferred when Tp=%5To. This occurs when
cos? (o) = (% +1 ng)
where Joy is the spin/speed ratio (Rwoy/Vo). The naturd roll kinetic energy is split evenly
when Th NR=Te,NR- Using the previous natural roll conditions, this occurs when
COS2 (o NR) = (% + % Joy)
The angles o and anR are equal only when
Joy (Joy —1) =0
There are only two possible solutions to this equation: Joy =1, the natural roll situation
discussed in P4.19, and Joy =0, the stun shot condition discussed in P4.20. For other

spin/speed ratios, there will be one angle o that splitsthe initial kinetic energy, and a
separate angle onR that splits evenly the natura roll kinetic energies.

Problem 4.23: If the cue ball has reverse natural roll (RNR), Vo=- Rw gy, what is the

relation between the cut angle o and the natural roll deflection angle 6?
Answer: For reverse natural roll, Joy =-1. Referring to the result in P4.21,

tan(o. +6) = - Stan(a)
The sign factor in this equation indicates that (o+0) isin a different quadrant than o.
Specifically, Ofa£p2 is awaysin the first quadrant, and p2£(6+a)Ep isawaysin the
second quadrant. Taking the appropriate quadrant for 0 givesthe relation

0= arctan(- %tan(oc)) -otm o

For small cut angle a, it is seen that
0»m- 3o [for small o]

The same factor of 9 is seen for the RNR draw shot as for the (topspin) natural roll shot
in P4.15. However, in the case of adraw shot the deviation is away from the reverse
direction p (or 180 degrees), rather than the forward direction. Asin the case with
topspin, it is difficult to achieve alarger amount of draw than Vg=—Rwg with a normal
direct cue-tip/cue-ball shot due to the risk of miscue (see P1.7). However, higher
spin/speed ratios can be achieved with carom and masse shots.

Problem 4.24: 1n P4.19 and P4.20 it is seen that the kinetic energy of the cue ball and
object ball is split evenly when the cut angleis equal to the cue ball deflection angle for
Joy=1 and Joy=0. Show that this condition is true for arbitrary Joy. What isthe cut angle
that splits the natural roll energy of areverse natural roll collision? How doesthisangle
compare to the natural roll angle from P4.19.

Answer: From P4.22, the post-collision natural roll kinetic energy is split evenly when
cos’ (o) = (—% +% Joy) and sin (o) = (—% - %Joy). Substitution of these relations into the

general deflection angle equation of P4.21 gives
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sin(a)cos(a) _ sin(a)cos(a)
sn®(a)+2Jy,  cos’(a)
=tan(a)
or in general B = oo when the natural roll kinetic energy is split evenly. Thislineisshown
in Fig. 4.7. The above equation for the cut angle may be written as

a=0= arcsin(, /% - %Joy)

In particular, for reverse naturd roll, Joy=-1, the half-energy cut angle is given by

— ; 7] — — T —
=arcsin|, / =0.99116 = =56.789d
“ITRWR ( m) 31696 | °d]

From comparison with P4.19, it is seen that o +a
P ITRNR

tan(0) =

_x -
ITNRT 2 Thisis an example

of the general relation

a1 +o1 =z
3Tdoy " 3T-doy ~ 2

. : 2 .2
which follows from the relation, cos =sn
(“-;T, Joy) (“-;T,- Joy)

The reverse natural roll deflection angle is shown as afunction of the object ball
cut anglein Fig. 4.7. Considering OrnR as a function of cut angle o, it is seen that OrnR
ranges from zero, for very thin cuts, to p, for very thick cuts. In contrast Ong from P4.15
only ranged from zero to a bit over p/6. Since natural roll topspin and reverse natural roll
backspin represent the practical extremes of cue ball spin (neglecting collision effects and
masse), the area between the ONR and OrnR curvesin Fig. 4.7 respresents all possible
practically allowed shots. The area between the Ogyn, curve and the OrnR curve
represents all possible draw shots, and the area between the Ogn and ONRr curves
represents all possible topspin shots. Inspection shows that the area associated with draw
shots is much larger than that associated with topspin shots. This meansthat thereis
much more flexibility with respect to carom angles with draw than with topspin, and
correspondingly, that topspin shots are usually less sensitive than draw shots to variations
in the cut angle or amount of spin. It may be seenin Fig. 4.7 that OrnR iSamost a
straight line, with an average slope of about twice that of Ogyn. Since Ogyn isrelatively
easy to determine, thisalowsin turn Ognr to be estimated for any cut angle simply by
multiplying Ogun by 2. Inspection of Fig. 4.7 shows that this simple factor will always
overestimate the actual deflection angle. The following problem demonstrates the
magnitude of error of this approximation.

| Problem 4.25: At what cut angle does areverse natural roll cue ball deflect at exactly a |
| right angle? |
|Answer: From P4.23, the desired cut angle satisfies the relation |
| tan(an +3%) = - 3 tan(on) |
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Using the identity tan(o.a + %) = - I/tan(a ), an may be determined to be
— 2) __=x
an = arctan(\/;) = 068472= 1
This point is plotted on the BrnR curvein Fig. 4.7. The simple “factor of 2” estimate
from the stun-shot curve would have predicted this angle to be p/4 (or 45 degrees), which
would have been about 12% in error. The correct cut angle o~ is about midway between
a half-ball cut angle and the p/4 angle.

[=39.232deg]

Problem 4.26: For agiven cut angle o, what sidespin/speed ratio will result in no
horizontal tangential frictional forces?
Answer: The surfaces of the balls must not slide against each other in order for the
frictional forces to vanish during the collision. The velocity of the cue ball contact point
just before the collision is the sum of the linear velocity Vg and the instantaneous vel ocity
due to the angular velocity about the vertical axis @ * r. The contact point velocity is
given by

Vep =Vo cos(ar)i + (Vosin(a) + Rw OZ)] - Rogy cos{a )k

=Vepxl +Vepyl +VepK

When V¢py=0, then the horizontal frictional forces vanish. Solving for the ratio Rwo,/Vo
gives

:Rsz_

J =-49n
0z Vo (o)

Problem 4.27: Using the initial spin/speed ratio and the final natural roll spin/speed ratio
from P3.6, and the Vpy=0 relation from P4.26, what cue tip contact points will result in
no horizontal tangential frictional forces between the two colliding balls with a cut angle
o?
Answer : For the spin/speed ratio immediately after cue tip contact, the contact points are
given by the vertical line satisfying
Sy

2R
Note that the object ball contact point satisfies the relation, y'cp=—Rsin(a). This givesthe
relation between y'iip and y'cp as

Yo = Y6
The sign difference means that the cue tip impact parameter isin the opposite hemisphere
from the object ball contact point. Note that in the l[imit of an extreme cut shot of angle
p/2, this result agrees with that of P3.5; that is, “sideways natural roll” is achieved with a
horizontal impact parameter of 2/sR. This relation is useful when the object ball collision
occurs very soon after the cue tip contact, before the friction between the ball and cloth
has time to change the velocity.

sin(a) =
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When the cue ball is allowed to achieve natural roll before colliding with the
object ball, the desired cue tip contact points satisfy

o
sin(oc):—(;i;p-
zeZupz
gﬁye‘po
Yo = - e 7R @ 4ip

For agiven cut angle o, thisisastraight line that passes through the origin (0,0). An easy
way to estimate the sets of points defined by this straight lineisasfollows. Refer to Fig.
4.8. Determine the correct contact point at height z; p=7/5R. At this contact point, natural
roll would be achieved immediately (see P3.5), and the natural roll horizontal offset isthe
same as the initial horizontal offset determined above, namely the contact point would be
(y,'z):(-3/5ycp,7/5R). The set of desired pointsis then given by drawing a straight line
between this particular contact point and the point at the very bottom of the ball (0,0). In
particular, the point on this straight line that is the minimum distance from the center is
on the small circle as shown in P3.7.

Set of desired
contact points

Object ball contact (-2/5Yep /I5R)

point on rear of Point of minimal
ball displacement from
center

“Small Circle” of
aim points

y
-

0.0
Fig. 4.8. The set of cue tip contacts points that correspond to no
(horizontal) frictional forces when the cue ball achieves natural roll prior
to collision with the object ball fall on a straight line. The object ball
contact point depends on the cut angle. The slope of the line depends on
the object ball contact point y'¢p as indicated.
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5. Statistics

The mathematical fields of statistical analysis, combinatorial analysis, stochastic
anaysis, and game theory are al useful in both physics and pool, and they are dll
interesting fields of study for the amateur. Statistical methods, which isused herein a
general way to include all of these fields, can be used to assess performance, to judge a
technique or strategy, and to predict future outcomes based on previous and perhaps
incomplete information. These and other uses of statistics will be examined in this
section. First some elementary background material and notation will be introduced.

The average, or arithmetic mean, of a set of values{x;}, called a population, is
X= = §N1 X
-3 i
Niz
N is the number of values and the index i runs over the members of the set. There can be
repetitions among the values xj, and it may be more convenient to sum over the distinct

values{y;}, weighted by their repetitions{ nj}, rather than the individual members of the
sample space. In this case the mean may be written as

Na/al '\éval Na/al
X=any/ an wheeN=an

i=1 i=1 i=1
The probability for each distinct valueis
-n
Pi N

and these form a set of nonnegative numbers {pj}; this gives another useful expression
for the mean.
N
X=a py
i=1
Note that the mean does not necessarily correspond to a member of the sample set.

The set of probabilities {pj} and the corresponding distinct values{y;} definesthe
probability distribution. For many purposes, it is convenient to consider the probability
asafunction of the value, p(y). For an ordered set of values{y;}, say with yi<yj+1, and
corresponding probabilities {pi}, there is a cumulative probability defined by

m
PA™= A A = P+ P
i=1
The cumulative probability increases monotonically to its maximum value of 1. Itis
sometimes useful to study properties of various subsets of the population, and the
cumulative probability is often used to pick out, for example, the bottom third, or the
middle third, or the top quartile, or the top 5%.
Another useful property of adistribution isthe median. Suppose that the
individual members of the sample space x; are ordered by value. The median of the
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sampleisthe value of the INT((N+1)/2) element in the ordered list, where INT() implies
truncation to an integer value. (There are several conventions used to handle the situation
in which there is an even number of members, and the two middle members have
different values; for ssimplicity, this situation will not be considered in this section.) In
terms of the ordered probability distribution, the median is determined by the smallest
value mwhich satisfies

pas

The median of the set {x;} isdenoted X. If the members of the sample space are chosen
randomly, then it isjust aslikely that a value less than the median will be picked as a
value that is greater than the median.

The distribution maximum or mode is the value corresponding to the largest
probability value. For agiven set, a maximum may not exist, or it may not be unique. If
the distribution is symmetric and centrally peaked, then the mode, the median, and the
mean will all be the same. If the probability distribution is symmetric, but not necessarily
peaked, then the median and the mean are the same but the mode may be different. If the
distribution is skewed, meaning that it is not peaked about a central value, then the mean,
the median, and the mode will generally have all different values.

Another important value that characterizes a sample set is the standard deviation,
which, like the mean, may be computed in various ways in terms of the sample elements,
repetition counts, and probability distributions.

18 1 b
OZJNa (% - x)° :\/N an- X)* :\/a pi(v - %)
i=1 i

i=1 i=1
e N 5 e, Ny o) Bl o
10 1 0 o}
= {;Na Xi2+' X2 = ‘N a ni>’i2+' %% = ca piy|2+- %2
eVis o e i1 o €iz1 @

If the sample values are very tightly clustered about the mean value, then ¢ will be small,
and if the sample values are broadly spread apart then ¢ will belarge. The varianceis
defined as the quantity 2.

Problem 5.1: Given the set { x} ={0,1,1,4,5} , compute the mean using all three methods,
the median, the mode, and the standard deviation. What are these same quantities for the
set {x}={0,1,1,8,9}.
Answer: For the first set, the distinct values and corresponding probabilities are
{vi}={0,1,4,5} and {pi}={¥5,75,%5,¥5}. The mean may be written as
O+1+1+4+5_ 0+2>§'+4+5:—1>0+2><]_+lx4+l>6:1—1

5 1+2+1+1 5 5 5 57 5
The median is the value of the third element (i.e. (5+1)/2) in this ordered list, X=x3=1.
The largest distribution value is pp=%5, so the mode is y,=1. In this case the mode and

X =




the median happen to have the same value, but they both differ from the mean. The
standard deviation of the first set is

24232 +42452 2
0:\/0 2A” +47+5 -"?é—lo = /% =1.939
5 €590 25

For the second set the mean is

Xx=20+22+18+10=2
and the standard deviation is 6=Sgrt(374/25)=3.868. For this set, the median is il
X=x3=1, and the distribution maximum py=75 still occurs for yo=1, the same as for the
first set. For both sets, the mean value does not correspond to a set member. The
standard deviation islarger for the second set than for the first set, reflecting the wider
range of values.

It is sometimes useful to merge various subsets of valuesinto one large set. If the
subset size, mean, and standard deviation is known for each of the subsets, then it is
possible to compute the size, mean, and standard deviation of the combined set without
knowing the individual values. The parameters of the combined set are given by

[}
N = a Ni
i
-_lo
R=3 a N X;
I
2_12 2,128 o o\2
o“==a Nioi +—a Ni(% - %)
N i N i
The summations in these equations are over the subsets, not the individual elements. The
combined average is simply the weighted average of the subset averages. The variance of

the combined set contains two contributions, the first is the weighted mean of the subset
variances, and the second is the weighted variance of the subset means.

Problem 5.2: Compute the mean and variance for the combined set
{0,0,1,1,1,1,4,5,8,9={0,1,1,4,5} A {0,1,1,8,9} using the results from P5.1.
Answer: N=5+5=10

% =(5(1¥5)+5(195))/10=3

$2=(5(%%25)+5(37¥25) +5(1/5-3)2+5(195-3)?)/10=10
It may be verified that these values agree with those computed using the individual
elements of the combined set.

In some situations the sample space is only a subset of alarger population space.
The sample space may be used to estimate the statistical parameters (mean, median,
mode, standard deviation, etc.) of the population space, or the population space statistics
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may be used to predict possible subspace statistics. In some cases the population space
may be too large to handle, or may even be infinite in size, in which case only a smaller
sample space isavailable. There are two conceptual ways of constructing a sample space.
One way is by randomly choosing elements from the population space, and setting aside
the member once it has been chosen so that it cannot be drawn again; the other way isto
replace the elements as they are chosen so that they may be chosen again. Some care
must be taken with this choice to ensure that the sample space gives the best possible
representation of the population space.

Suppose a population space consists of N distinguishable objects (e.g. numbered
dlips of paper). If one member of this set is chosen, and if the probability for all the
membersis the same (e.g. the slips are the same size and mixed well before selection),
then there are N possible, equally likely, outcomes. Now consider choosing two
members of the set, without replacement. What is the number of possible outcomes?
The act of drawing two objects can be thought of conceptually in two steps. drawing one
object, setting it aside, and then drawing the second object. There are N possible
outcomes after the first draw, and (N-1) possible outcomes for the second draw, so it
would appear that there might be N(N-1) possible outcomes. However, if the order of
drawing the two objects is unimportant, then this overcounts the outcomes by a factor of
two, and the correct answer would be N(N-1)/2. In the general case, what is the number
of possible outcomes for choosing m distinguishable objects where the order that they
might be drawn is unimportant? The answer isthe binomial coefficient which iswritten

Ny _ N!' N(N-2)(N-2)-(N-m+1)

&Mz~ mi(N- m)! 1253 --m
The numerator in the last expression is the number of ways to select the m objects one at
atime, without replacement, from the popul ation space, and the denominator is the

number of permutations of these objects to account for the fact that their order is

aNo
emg

irrelevant. The binomial coefficient is often pronounced “N choose m” to stress this

important relationship. Binomial coefficients satisfy the recursion
aNg_alN -1, alN- 1
emg-em-1lg e m @

alNp _ alNg

e0g~ éNg

+

with the boundary conditions =1. Thisleadsto “Pascal’s Triangle”

in which the row is determined by N and the element within the row correspondsto m. In
the triangle, each element is the sum of the two nearby elementsin the row aboveit, a
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result of the two-term recursion. The name “binomial coefficient” comes from the fact
that these numbers are the coefficients of the individual elements in the term-by-term
expansion of (p+q)".
n
o ..
(p+a)"=Q Z0p™d™ ™ =q" +npg" ... +np" 1g+ p"

m=0

Problem 5.3: Given the sample set {1,2,3,4}, enumerate all of the ways of choosing zero,
one, two, three, and four elements without replacement.

Answer: Thereis 1 way to choose zero elements: {}; there are 4 different ways to choose
one element: {1}, {2}, {3}, and {4} ; there are 6 ways to choose two elements: {1,2},
{1,3},{1,4},{2,3}, {24}, and { 3,4} ; there are 4 ways to choose three elements: {1,2,3},
{1,2,4},{1,3,4}, and { 2,3,4} ; thereis 1 way to choose four elements: {1,2,3,4}. These
numbers, 1, 4, 6, 4, and 1, agree with the n=4 row of Pascal’s triangle and with the
closed-form expression for the binomial coefficients.

Suppose that the probability for a“successful” event to occur isp. The
probability for afailureis g=(1-p). If the sample spaceisinfinite, or if the spaceisfinite
and the sampling is done with replacements, then the probability for success does not
change upon repetition and the probability for two consecutive successesis p2. The
probability for a single success and asingle failure is 2pq, because there are two ways to
arrive at this result, each of which has probability pg. The probability of two failuresis
g2. Inthe general case, the probability of obtaining m successes and n failures after

N=n+m attempts is given by P(p;m,n):é%nr; ngpmqn. Comparison with the binomial

expansion shows that this probability is the mth term in the expansion of (p+q)(Mn);
consequently such distributions are called binomial distributions.

Problem 5.4: Two players are playing 9-ball, and the probability that player-1 will win
an individual gameis p=%3. What is the probability that after 4 games the score will be
3:1? Enumerate all the possible ways of arriving at this game score.

Answer: Using the above equation the probability is

w5308 ) = ()) % =005

There are four ways of arriving at this game score: LWWW, WLWW, WWLW, and
WWWL. The probability of each of these individual ways occurring is

p’d" =(3 )3(%)1 =0.0988.

Problem 5.5: Two players are playing 9-ball, and the probability that player-1 will win
anindividual gameisp=%3. The match is handicapped at 3:2, meaning that player-1
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must win 3 games whereas player-2 must win only 2 gamesin order to win the match.
What is the probability that player-1 will win this match? If the match is handicapped at
N1:No, what isthe general expression that player-1 will win?

Answer: There are two ways that player-1 can win the match handicapped at 3:2, namely
3:0, and 3:1. Inorder to arrive at a 3:0 score, player-1 must win the last game from a 2:0

. 2 0
score; the probability for thisto occur is pP(p;2,0):(%)g%8(%) (%) = -537 =0.29. In
order to arrive at a 3:1 score, player-1 must win the last game from a 2:1 score; the
- . . ) (288 2\2(1\1 _ 8 _ -
probability for thisto occur is pP(p,2,1)—(-3 )élg?:) (3) =55 =0.296. The probability

of player-1 winning the match is the sum of these two terms, W=16/27=0.593.

In the general case, there are N> ways for player-1 to win the match: N1:0, N1:1,
..., N1:(N2-1). The probability for the individual N1:m case is pP(p;N1-1,m). The
probability that player-1 will win the match is the sum over all of the individual
probabilities

N,-1 -1
+m- 1
W(BNNp) = @ pP(piNy - 1,m)= gédl m lgleqm
m=0 m=0

In the following two problems, the match probability W is examined, first with the game
probability p fixed and varying the matchup N1 and Np, and then with N1 and N> fixed
and varying p.

Problem 5.6: Write a computer program to compute atable of values containing
P(p;m,n) for OEME9 and OEN£9. From this table, compute the corresponding W(p;m,n)
tables for 1EmME10 and 1£n£10. Compute these tables for p=Y>, for which the players are
equally likely to win an individual game, and for p=%3, for which player-1 istwice as
likely to win an individual game as player-2.

Answer: For this purpose, it is better to formulate the P(p;m,n) table construction using
the following recursion approach (which is similar to computing Pascal’ striangle).

P(p;0,0)=1

P(p;0,n)=gP(p;0,n-1) - forn=1,2,...9
P(p;m,0)=pP(p;m-1,0) - for m=1,2,...9
P(p;m,n)=gP(p;m,n-1)+pP(p;m-1,n) - for m=2,...,9 and for n=2,...,9

Basically, this recognizes the fact that to arrive at a score of m:n, either player-1 must win
the last game from a score of (m-1):n, which occurs with probability p, or player-2 must
win from a score of m:(n-1), which occurs with a probability q.
The W(p;m,n) table is then constructed in a similar manner.
W(p;m,1)=pP(p;m-1,0) ; for m=1,...,10
W(p;m,n)=W(p;m,n-1)+pP(p;m-1,n-1) ; for m=1,...,10 and for n=2,...,10
These tables are included below for the two specified values. Note that the P(¥2;m,n)
table is symmetric (i.e. P(Y2;m,n)=P(¥2;n,m)), as would be expected for two equally
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matched players. Note also that the W(%3;3,2) entry agrees with the hand-cal cul ated
value from P5.5.

Such a program may be easily written in almost any programming language or
spreadsheet. It is sometimes handy to have such a program available when directing
tournaments, or even for personal use, in order to determine fair handicapped matchups
between players of varying strengths.

Problem 5.7. Compare the W(p;n,n) and the W(p;2n,n) match probabilities for 1En£10
numerically as afunction of the game probability p.

Answer: Using the computer program from P5.6, the appropriate elements of the W table
may be determined as afunction of p. These match probabilities are shownin Fig. 5.1.
In general, it may be observed that each curve of W(p;m,n) is an increasing function of
the game probability p. It is seen that W(Y5;n,n)=Y5 for all matches. This meansthat if
player-1 isthe stronger player, p>¥5, it isto his advantage to play alonger even matchup
rather than a shorter match, but if player-1 isthe weaker player, p<¥», then it isto his
advantage to play a shorter match. A beginner might be ableto winagame (i.e. al:1
match) against a professional, but it is most unlikely that he would win alonger 10:10
match.

There is no single common point of exact intersection for the W(p;2n,n) curves;
these curves cross at sightly different values of p. If amatch probability of W=Y5 is
defined as“fair”, then it isclear in Fig. 5.1 that player-1 must have alarger game
probability p to survive a 2:1 match than a4:2 match. An interesting region occurs for
the 2:1 and 4:2 curves after they intersect (W(.641;2,1)=W(.641,4,2)=.411) but before the
point corresponding to W(.686;4,2)=Y>. In this domain, .641<p<.686, W< for both
curves, so player-1 is expected to lose both matches, yet it is still to his advantage to play
the longer match. This handicapped situation isin contrast to the even-matchup situation
in which the expected winner always benefits from the longer match. Such adomain
exists for the other pairs of 2n:n matchup curves, but it becomes much smaller because
the curves are steeper for longer matches. Furthermore, in the domain .5<p<.641, before
the 2:1 and 4.2 curves intersect, player-1 is the stronger player but his best chances of
winning are with the shorter 2:1 match. Again, thisisin contrast to the even-matchup
situation in which the stronger player aways benefited the most with longer matches.
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P(¥2;m,n)

m\n 0 1 2 3 4 5 6 7 8 9
0 1000 0500 0250 0125 0063 0031 0016 0008 0004 0002
1 0500 0500 0375 0250 0156 0094 0055 0031 0018 0.010
2 0250 0375 0375 0313 0234 0164 0109 0070 0044 0.027
3 0125 0250 0313 0313 0273 0219 0164 0117 0081 0054
4 0063 0156 0234 0273 0273 0246 0205 0161 0121 0.087
5 0031 0094 0164 0219 0246 0246 0226 0193 0157 0122
6 0016 0055 0109 0164 0205 0226 022 0209 0183 0.153
7 0008 0031 0070 0117 0161 0193 0209 0209 0196 0.175
8 0004 0018 0044 0081 0121 0157 0183 0196 0196 0.185
9 0002 0010 0027 0054 0087 0122 0153 0175 0185 0.185
W(¥2:m,n)
m\n 1 2 3 4 5 6 7 8 9 10
1 0500 0750 0875 0938 0969 0984 0992 0996 0998 0.999
2 0250 0500 0688 0813 0891 0938 0965 0980 0989 0.994
3 0125 0313 0500 0656 0773 085 0910 0945 0967 0.981
4 0063 0188 0344 0500 0637 0746 0828 0887 0927 0.954
5 0031 0109 0227 0363 0500 0623 0726 0806 0867 0910
6 0016 0063 0145 0254 0377 0500 0613 0709 0788 0.849
7 0008 0035 009 0172 0274 0387 0500 0605 0696 0773
8 0004 002 0055 0113 0194 0291 0395 0500 0598 0.685
9 0002 0011 0033 0073 0133 0212 0304 0402 0500 0.593
10 0001 0006 0019 0046 0090 0151 0227 0315 0407 0500
P(%3;mn)
mn 0 1 2 3 4 5 6 7 8 9
0 1000 0333 0111 0037 0012 0004 0001 5E-04 204 B5EO5
1 0667 0444 0222 0099 0041 0016 0006 0002 OE-04 3E-04
2 0444 0444 0296 0165 0082 0038 0017 0007 0003 0.001
3 0296 0395 0329 0219 0128 0068 0034 0016 0007 0.003
4 0198 0329 0329 0256 0171 0102 0057 0030 0015 0.007
5 0132 0263 0307 0273 0205 0137 0083 0048 0026 0013
6 0088 0205 0273 0273 0228 0167 0111 0089 0040 0.022
7 0059 0156 0234 0260 0238 0191 0138 0092 0057 0034
8 0039 0117 0195 0238 0238 0207 0161 0115 0077 0048
9 0026 0087 0159 0212 0230 0214 0179 0136 0096 0.064
W(73:m,n)
mn 1 2 3 4 5 6 7 8 9 10
1 0667 0889 0063 0988 0996 0099 1000 1000 1000  1.000
2 0444 0741 0889 0955 0982 0993 0997 0999 1000 1.000
3 0296 0593 0790 0900 0955 0980 0992 0997 0999 0.999
4 0198 0461 0680 0827 0912 0958 0980 0991 0996 0.998
5 0132 0351 0571 0741 085 0923 0961 0981 0991 0.99
6 0088 0263 0468 0650 0787 0878 0934 0965 0983 0.991
7 0059 0195 0377 0559 0711 0822 089 0942 0969 0.984
8 0039 0143 0299 0473 0632 0759 0851 0912 0950 0973
9 0026 0104 0234 0393 0552 0690 0797 0873 0925 0.957
10 0017 0075 0181 0322 0476 0618 0737 0828 08%2 0935
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Match Probabilities
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Fig. 5.1. The match probability W as a function of the individual game
probability p for even n:n matchups and uneven 2n:n matchups of various
lengths. For all of the individua curves, the match probability is an
increasing function of the game probability. The steepness of a curve is
related to how sensitive is the match outcome to the game probability.

Problem 5.8. A strong player is negotiating a matchup with aweaker opponent and he
knows that his game probability against this opponent is p=73. Heis offered a choice
between asingle long match of 9:5, and a 3:1 match of sets where each set is handicapped
at 3:3. Which option is best for player-1?

Answer: At first this seems very complicated, so it is best to break the problem down into
smaller pieces that are easier to understand. Player-1 will win the long match with a
probability of W(93;9,5)=.552 according to the table in P5.6. He will win a 3:3 set with a
probability of W(973;3,3)=.790, also according to the table in P5.6. The match probability
for the second option is given by W(.790;3,1). That is, the statistical analysis for winning
multiple-set matches is the same as that for winning multiple-game matches, but with the
variable p being the set probability instead of the game probability. This may be
computed using the program in P5.6, or from the polynomial expression from P5.5:
W(p;3,1)=p3. In either case, the result is seen to be W(.790;3,1)=.493. Player-1 would
have asmall 5.2% advantage over player-2 in the long-match format, but he would have aﬂ
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dlight 0.7% disadvantage with this particular set format.

In either case, player-1 must win 9 gamestotal in order to win the match. In the
long match format, player-2 needs to win 5 games to win the match, whereas in the set
format he needs only to win 3 games, provided they are al in the same set. In the set
format, player-2 can win as many as 6 games and still lose the match, provided they are
split evenly with 2 gamesin each set. There are apparently no shortcuts, based simply on
the total games required by each player, that will give the correct choice in these
negotiations. The actual statistical analysisis required to correctly assess each possible
option.

In the general case of multiple-set matches, the player-1 match probability is
given by the general expression

match _ nSet nset). \match ,match
w —VV(VV(IO,Nl , N )1'\'1 N )

in which the required games per set and sets per match are indicated and in which pisthe
individual game probability for player-1.

For agiven N with N=n+n, binomial distributions characterized by the
probabilities P(p;m,n) are centrally peaked for p»¥5 (i.e. the peak occurs near m»N/2),
the peak is shifted toward large m values for large p»1, and the peak is shifted toward
small mvalues for small p»0. Because binomial distributions are so common, it is useful
to characterize the peak X, the mean X, and the standard deviation s in ageneral way.

Problem 5.9: Compute the mode, the mean, and the standard deviation of a binomial
distribution in terms of N and p.
Answer: The possible values of abinomial distribution correspond to the integers
{m;m=0,...N} and the corresponding probabilities are given by P(p;m,N-m). The mode,
or distribution peak, occurs for the smallest value of m for which
P(p;m+1,N-m-1)<P(p;m,N-m). The peak of abinomial distribution is given by

X = Mgmall = Ceiling(Np-q)
where Ceiling(x) denotes the smallest integer that is greater than or equal to x. The mean
isgiven by

N N
o o N! -
=@ MmN - )= 8 My 7
m=0 m=0 '
N-1 N-1
_ é N(N-D!  m+1 N-1-m_ Npé (N-1)'  m N-1-m
mi(N- 1- m)! m!(N- 1- m)!
m=0 m=0

N- 1
=Np(p+4d)" "=Np
The mean and the mode of abinomial distribution differ by, at most, one. A similar
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| sequence of operations gives the standard deviation of abinomial distribution.
o = Npq

An important property of the binomial distribution isthat for large N, it

approaches the normal distribution defined by
__ 1 3%’

P(x) = oy e
This distribution is symmetric about the mean and is peaked at the mean. It is often
useful to shift and scale the domain of the distribution using the equation z= (x- X)/c .
In terms of these dimensionless transformed values, called standard units, the normal
distribution takes the simple form

1p2
2Z

1
P(z) = E e
In this standard form, the normal distribution is peaked at z=0 and has a standard
deviation of s=1. Areas under the normal distribution correspond to various cumulative
probabilities. However, the form of the normal distribution does not allow for asimple
closed-form expression of the antiderivative, so integrals must be computed numerically
or interpolated from tables. One form for these tablesisin terms of the symmetric

L
integral P*™(z,) = (J(2dz. Thefollowing short table gives some of the more

commonly used cumulative probabilities and their corresponding critical values 7.

Table5.1. Normal Distribution Critical Vaues
pcum(z,) 9973 .99 .98 96 9545 .95 .90 .80 .6827 .50

Zc 3 258 233 205 2 196 1645 1.28 1 .6745

Problem 5.10: When two players play 9-ball the probability that player-1 will win any
particular gameis 0.52. These players play 120 games. What is the expected mean score
for player-1 and the expected variation about this mean score? What is the range of
scores that would be expected to occur 95% of the time? What is the range expected to
occur 50% of the time?

Answer: The possible game scores form abinomial distribution. The mean score for
player-1is X =Np=120(0.52)=62.4. The standard deviation is

s=/Npq =,/120(.52)(.48) =5.47. For 120 games, the binomial distribution can be
approximated by anormal distribution. The critical value corresponding to 95% is
z=1.96. z:5=(1.96)(5.47)=10.7, so there is approximately a 95% probability that the
final game score for player-1 will be between X -z;s=51 and X +z2:s=73. Thereisonly
about a 5% chance that the final score will be outside of thisrange. For the 50% range,
z:5=(.6745)(5.47)=3.69, so there is a 50% chance that the player-1 game score will be
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| between 59 and 66 using the normal approximation to the binomial distribution. The |
|exact probability, using the exact binomial statistics asin P5.6, for this range of scoresis |
|53.5%, which shows that the normal distribution approximation is quite reliable.

Suppose that the probability p corresponds to some average probability of
successfully executing a shot, and runlength statistics are of interest, where “runlength”
means the number of consecutive successful shots. The chances of success on the first
shot is p, and for two consecutive successful shotsis p2, and so on. The probability of
running n balls or greater isp". What is the probability of running exactly n balls and
then missing? The answer isrp=p"q where g=(1-p). Theset {rn} then definesa
probability distribution for a population of infinite size.

Problem 5.11: What is the mode, mean, and median runlength for a probability
distribution defined by r,=p"q as afunction of p?

Answer: The ratio of two successive runlength probabilities, rn+1/rn=p<1 shows that the
distribution is monotonically decreasing, and therefore the maximum of the distribution
occurs always at n=0, regardless of p. This shows that the mode is not particularly useful
for predicting typical outcomesif the distribution is severely skewed. The mean
runlength is

F=a mn=(1- p)a np
n=0 n=1
That is, arun of length n occurs with probability r. It may be verified by straightforward
division that
18
= p" =1+p+pPe+pie,
@-p =
Differentiating both sides with respect to p , followed by multiplication by p, givesthe
identity

¥
_pz = é np" = p+2p? +3p°+... +kpK+. .
(1- p) n=1
Substitution of this relation into the expression for the mean runlength gives
__b _p
(1-p) g
T
P+

The first equation gives the average runlength in terms of the individual shot probability,
whereas the second gives the individual shot probability as a function of the average
runlength.

The median runlength is the smallest value m that satisfies the equation
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o o A. m+1 0
1Eram=g ra=- P p" =0 pP=—==1-p
e l-p o
n=0 n=0
The summation identity is easily verified from the above expansion of 1/(1-p). Some
rearrangements then give the result that the median runlength corresponds to the smallest
integer mthat satisfies the relation

ms . &ou2) , 8
élog(p) "o

It isinteresting that the median runlength r =mis always less than the mean runlength
I =p/(1-p), as demonstrated in the following table.

Table 5.2. Runlength statistics for selected shot probabilities p.

P F=p/(1-p) -(1+log(2)/log(p)) r r/r
0.5 1.0 0.0 0 0.000
0.6 15 04 1 0.667
0.7 2.3 0.9 1 0.429
0.8 4.0 21 3 0.750
09 9.0 5.6 6 0.667
0.91 101 6.3 7 0.692
0.92 115 7.3 8 0.696
0.93 133 8.6 9 0.677
0.94 15.7 10.2 11 0.702
0.95 19.0 12,5 13 0.684
0.96 240 159 16 0.667
0.97 32.3 21.8 22 0.680
0.98 49.0 333 34 0.694
0.99 99.0 67.9 68 0.687

Problem 5.12: What is an approximate relation between the median and the mean

runlength for the ry, distribution?
Answer: Using natural logarithms, the median runlength may be written

& 6
Fy BNQ 6 g In@) -
ein(p) "o ¢@l 6 -

€ e1+r9 @
For reasonably large T, the denominator simplifies using the approximations

.2
T =1- 1 ?@0 -...»1- 1
1+7 r €rg r
.. i .2 .3 .
|ni£LO» In(1- 1'): di'0+ldi'0 - ;aeiLo +...»- idi'o
T r

€1+r9 "éro 2erg  3erg

This gives the approximate relation
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= =

» In(2) = 0.693

The last column of Table 5.2 shows the actual median to mean ratios for some selected
values of p. This approximation is seen to be accurate to within afew percent for mean
runlengths I of about 5.0 or larger.

Problem 5.13: An experienced 14.1 player knows that his mean runlength is 24.0 balls.
What is the shot probability using the ry, estimate of the statistical distribution? What is
the probability that this player will run between 50 and 75 balls? What is the probability
of arun 100 or larger?

Answer: Theindividual shot probability for this player is p=24.0/25.0=.96. The
probability of arun between 50 and 75, inclusive, is r7s " - rgg " =(1-p76)-(1-p50)=
p°0-p76=0.085. That is, the player should expect a run between 50 and 75 to occur in
8.5% of the attempts. The probability of arun of 100 or over is1- rgg" =p100=0.017;
such arun will occur in 1.7% of the attempts.

Problem 5.14: This same 14.1 player is offered afriendly wager that for the rest of the
day, every run over 20 balls he will win the wager amount, and every run of 20 balls or
less he will lose the wager amount. Using the above statistical runlength model, isthisa
good proposition for the player?

Answer: Since his 24.0 mean is over 20 balls, it might seem at first that it would be a
good proposition. However, upon closer inspection, the wager isreally a matter of the
median runlength, not the mean runlength. The individual shot probability for this player
is p=24.0/25.0=.96, and this corresponds to a median runlength of r =16 according to
Table 5.2. The approximation from P5.12 gives I »(0.693)(24.0)=16.6, so even if the
player did not have the benefit of the table or a calculator to compute the exact median,

he should expect to run 20 balls less than half of the time. Computation of the exact

cumulative probability for m=20 gives rso™=1- 0.96! = 0.576, which means that he

should expect to lose the wager 57.6% of the time, and win it only 42.4% of the time
using the simple statistical model.

As shown in the following problem, safety play between opponentsin an actual
game situation skews the differences between the mean and the median runlengths even
more than that predicted by this simple statistical model.

Problem 5.15: Assume that due to safety play by the opponent, the first shot of aplayer’s
inning has a success probability of only ap, with O<a£1, and each subsequent shot then
has a success probability of p. What is the runlength probability distribution, the mean,
the median, and the approximate ratio of the median to the mean as a function of a and p?,
Answer: r(a)g=(1-ap), r(a)1=apq, and, in general, r(a)n=ap"q for n>0. Using the same
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approach asin P5.11, the mean runlength is found to be
Flo) = —2
1-p
The cumulative probabilities are given by
cum _ m+1
r(a)y =1- ap

and the median runlength is determined by the smallest integer m that satisfies the

eguations
I,(O()cum —1- apm+13 1

m 2
. gﬂog(Za) P
elog(p) ‘o
The approximate ratio of the median to the mean, using the same approximations asin
P5.12, isgiven by
(), In2c)
F(a) o
A few sample valuesfor this ratio are shown in the following table.
a 10 09 08 07 06 05

r(a)/f(a) | 069 065 059 048 030 0.0
Only in the best possible case, a=1, isthisratio as good as that predicted in P5.12; in the
other cases, this ratio becomes progressively worse with more aggressive safety play.
(Notethat in all of the equations above, setting a=1 produces agreement with the
previous results.) This shows that even though the mean runlength is strongly dependent
on safety play, the median runlength is even more sensitive.

The previous discussion concerned runlengths in which there were n successes
followed by asingle miss. In agame situation, thiswould apply to asingle inning of a
longer game. What is the runlength distribution after several innings? Using asimilar
approach as before, it is seen that the probability of accumulating n successful shots and
m misses out of N=m+n total shotsisthe binomia expansion term P(p;n,m). The
probability of arunlength score of exactly n after minnings (neglecting penalty points
that might apply to the missesin the game) is given by

Rum =aP(pin,m- 1) =&+ M7 10gngm
That is, the first (m-1) misses can occur anywhere during the first (n+m-1) shots, but the
last miss must occur on the last shot. It may be verified that Rh1=r, for al n, which isthe
single-inning runlength distribution that has been previously examined.

| Problem 5.16: What is the mean score after minnings, using the Rym distribution, as a |
|function of p? What is the standard deviation of these scores? |
| Answer: The mean scoreis |
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The summation identity used in the above sequence may be verified using induction and
repeated differentiation of the 1/(1-p) expansion asin P5.11. Thisresult says simply that
if aplayer has a mean, single-inning, runlength of 7, then after minnings, his mean score
will bemr .

The variance and standard deviation of the scores are

2 ai‘éé 2 0 =2 52 éé
N T
€n=0 [} n=0
B _ g _ —» 2 méé (n+m+1)! n
=Rn- Rn+ @ 0 DRom = Ro - R+ m(m+2)p°d" g =Ty
n=0 n=0 .

There are significant qualitative differences in the Rym distributions (for agiven
inning count m) and the single-inning ry, distribution, particularly for large m. The most
obvious of these isthat the mode (or peak) of Rym may occur for a nonzero value, as may
be verified by inspection of afew examples; in contrast, the single-inning ry, distribution
always peaks at n=0. The ratio of two successive probability valuesis

Riti,m _a +mg

Rim €n+19

Thefirst factor is nonincreasing and approaches one from above as n increases, the
second factor p isless than one, and the product may be either larger than one, indicating
that the distribution is increasing towards a peak, or less than one, indicating that the
distribution is decreasing after the peak. The mode is determined by the smallest
nonnegative value of n for which the ratio is less than one, or zero if theratio is aways
less than one. Solving the above ratio for this value gives the relation

Mode = Cailinge" 20 — ceilingfR,, - 29
el- pg e qQ2
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The closed-form expression for the multiple-inning median involves special function
evaluations (namely, the incomplete beta function), but it is easily determined by
inspection of the numerical cumulative distributions for a given shot probability p and for
agiven value of the inning count m. The following table gives some examples of these
statistical parameters for selected values of mand p.

Table 5.3. Multiple-Inning Runlength Statistics

Mode Rm I:\)m
pm 1 2 4 8 16 1 2 4 8 6] 1 2 4 8 16
500 0 2 6 14 1.0 2.0 4.0 80 160 0 1 3 7 15
6 0 1 4 10 22 15 30 60 120 240 1 2 5 11 23
7] 0 2 6 16 34 2.3 4.7 93 187 373] 1 4 8 18 36
8] 0 3 11 27 59 4.0 80 160 320 640 3 7 15 31 63
9] 0 8 26 62 134 90 180 360 720 1440 6 15 33 69 141

Because the median has no simple closed-form expression, as do the mode and the mean,
auseful empirical approximation of the median is given by the weighted average

R = 5 (2R + Mode) » Ry, - ¥/(3q)

Comparison of this estimate with the above exact valuesin Table 5.3 showsthat it is
fairly accurate for m=4 or greater. Note that apart from the integer truncation in the mode
and median evaluations, the differences between the mean, median, and the mode depend
only on the individual shot probability p and are independent of the inning count m. This
iswhy the three statistics appear to merge together in arelative sense in Table 5.3; they

all increase with the inning count m but with constant differences.

When the multiple-inning runlength mean and the mode are relatively close to
each other, indicating little skew, and the distribution has a single peak that is not close to
zero, then the distribution is well approximated by a normal distribution with mean and
standard deviation as determined in P5.16. That is, even though the single-inning
distribution appears very different than a normal distribution, the multiple-inning
distributions approach nonetheless a normal form as the inning count mincreases. A
perhaps simpler example of this common phenomenon is the point totals for two fair
dice; each dieindividually has aflat distribution of point values from one to six, but when
the totals are added for two dice, the probability of totaling to seven (p7=%g), which isthe
mean, is six times larger than rolling a two (p2=¥3g), with the other possible totals having
intermediate probabilities. The results from P5.16 show that although the standard
deviation of the score distributions are increasing with the inning count m, the deviation
increases only as /m, whereas the mean score increases linearly asm. This means that
the relative deviations (also called the relative dispersions), given by o,/ Ry, = J/\/F ,

decrease with respect to increasing inning count. When viewed in terms of percentages,
the score will appear to more tightly cluster with larger inning counts, but when viewed
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in terms of actual score points, the score will appear to disperse more with larger inning
counts; thisis demonstrated in the following problem.

Problem 5.17: The 14.1 player from P5.13 plays 5 innings. What is his mean score, most
likely score, and his median score? What is the standard deviation of the expected score
distribution? What are these parameters after 50 innings?

Answer: This player’s mean single-inning runlength is F =24.0, so his shot probability is
p=0.96. After 5innings, the mean score is given by

R; = mf =5(24.0) =120.0
His most likely scoreis the distribution peak, or the mode, given by

Mode = Ceiling(Ry, - /q) = Ceiling(120.0 - 25.0) = 95
The median is estimated as

Rs = 3(2Rs + Mode) » Rs - 1/(3q) = Rs - 25.0/3=112
This shows that the distribution of scores after 5 innings still is skewed significantly to
theright. The standard deviation after 5 inningsis

og = Jmp/q=J5.96)/.04 =548
and the relative deviation is o5/ Rs =54.8/120.0 = 0.457, which is quite large.

If the player were to wager afixed amount per point on the score after 5 innings,
then the 120 point score demarks the fair betting point; those betting against the player at
alower score should expect to lose. But if someone were to wager in a betting pool of all
possible scores, then a score of 95 isthe most likely winner, and the scores close to 95
would be the best alternatives. And finally if the player were to wager simply whether
the score is beyond a certain value after 5 innings (asin P5.14), then the 112 point score
demarksthe fair betting point; those betting against the player at alower score should
expect to lose.

For 50 innings the statistical parameters are: Ryp=1200, Mode=1175, ﬁgo =1192,
s50=173, and s50/ R5p=0.144. Thisdistribution isonly slightly skewed to the right, and

although the standard deviation islarger for 50 innings than for 5 innings, the relative
deviation compared to the mean is much smaller.

In most of the previous discussion, the population distribution and statistical
parameters have been assumed to be known, and the questions have been about the
properties of various samples of this population. The reverse situation is now examined,
namely how to predict the total population statistics from known sample statistics. For
this purpose, consider a population from which all possible subsets of a particular size are
formed. Each of these subsets has a mean, and the questions of interest are how reliable
of an estimate for the total population mean is one of these subset means, how does this
estimate depend on the standard deviation of the population, and how does this estimate
improve with increasing sample size.
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Assume that there is some population {x} that has amean X, and a standard
deviation sp. To simplify the following steps, it is assumed that the population isfinite
of size N, but the final results will also hold for infinite populations. Now suppose that
m-element subsets are drawn with replacement from the population. There are N™
possible m-element subsets, and b is used as an index symbol to enumerate them. Such
m-element sets are called cartesian product sets. The mean of each of these subsetsis

18
X =—a X(ip)
i=1
wheret (i,b) isthe population index of the i-th element of the b-th subset. The mean and
variance of these m-element subset meansis given by

_ 1 8
Xm = ma %

p=1
N™
S 1 98 2 _
O[X]%: N ng_ X[Zm]
p=1

For m=1, there are N 1-element subsets, and the mean of each of these subsetsis
simply the value of that element, X3 = X;j,3) = %, and the mean of the subset meansis

the same as the popul ation mean.

N
1o _ _
xu=ya % =%p
p=1
Similarly, the variance of these subset means is the same as the population variance
N
<12 2 .2 2 2
O[X]l—— Xf)- 1]:O'p
p=1

Now consider the situation in which the m-element subset parameters X and o[)‘(]ﬁ1
are assumed to be available. The (m+1)-element subsets are constructed by forming the
cartesian products { x, A Xg;l =FaNp =14 Nm} . That is, each of the new set members

isformed by combining the N population set elements with all possible N™ m-element
subsets. The mean of each of these new subsetsis

- o Xt

Xpe=Xp =71
The mean of these subset meansis

Nm+l m
1 Rp ¥ MXm
Xme1] = N—Iglﬂxm ma}ﬂ( ) (m+1)

Thisrelation gives the results X [2)=X p, X[3]=Xp, and, in general,
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X[m=Xp
for all subset sizesm. The variance of the subset meansis
N N
-2 _ 1 8 o > o

o[ Xl —Wa a Xig - Xm]
p=1i=1
Nm N

1

1
:N_Ia' a mz(xl +2mx,x'3 +m2x§)- )_(g

(m+1)°
This relation gives the results s[ X ]22=s p?/2, s[ X]3%=s p?/3, and, in general,
s[X]mZ=sp?/m. The standard deviation of the subset means is then given by

-1 _ 9p

o[X]m = ﬁ
That is, the distribution of subset means becomes more narrowly peaked about the
population mean as the size of the subset becomes larger. Thisrelation also saysthat if
the population standard deviation is small, then the mean estimates obtained from the
subsets will be similarly sharp. In practice, the population standard deviation is usually
not known, so it must be estimated from the m-element subspace statistics, along with the
estimate of the mean.

When the subsets are formed by selection from the population without
replacement, then the mean of the subset meansis also given by

X[m=Xp
and the standard deviation of the subset meansis given by

O[X]m = J—"N i

The standard deviation of the means of the subsets formed without replacement are
always smaller than those with replacement, and in particular s[ X ], =0 when m=N.
When N>>m, then the standard deviation of the mean is essentially the same for both
types of subsets, and in the limit of an infinite population, both expressions are seen to be
formally equivalent.

When the standard deviation is computed for an m-element sample space, then it
is customary to use the factor (m-1) rather than min the denominator; this has the effect
of making the estimate for the population standard deviation dlightly larger, but for
reasonably large sample sizes the difference is unimportant. There are also other
corrections that are sometimes applied when estimating popul ation statistics from sample
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spaces. With the knowledge that such corrections can lead to slightly better estimations,
they will not be used in the following examples for the sake of smplicity.

Problem 5.18: A population space has the values {1,2,4,5} which occur with equal
probabilities. Compute the mean and standard deviation of the population set. Compute
the mean and the standard deviation of the mean of the 2-element cartesian product set.
Answer: The population space mean is 3.0, and the population standard deviation is
Sp=sOrt(5/2)=1.5811. The 2-element cartesian product set is the same as the 2-element
subsets drawn with replacement from the original set. There are 16 of these 2-element
subsets, all with equal probability,

{11} {12} {14} {15

{21} {22} {24 {25}

{41} {42} {44 {45

{51} {52} {54} {55}
and with the corresponding means

10 15 25 30

15 20 30 35

25 30 40 45

30 35 45 50
The mean of these 2-element subset meansis X [23.0, which demonstrates the general
relation X m=Xp. The standard deviation of these subspace meansiss|[ X ]2=1.1180,
which agrees with the equation s[ X]2=s p/sqrt(2). Note that these computations apply to
a4-element population space, or to alarger finite population space with the appropriate
repetitions, or to an infinite population space with the appropriate probabilities.

Problem 5.19: A player has a practice routine that involves a particular sequence of
shots. He keeps track of his numerical score for this routine for 10 weeks with the
following results: {50, 44, 46, 52, 47, 51, 49, 45, 48, 50} . What is his mean score?
Assuming anormal distribution of scores, what is the range of scores for which thereis
an 80% confidence level that the range includes the player’ s true mean score for this
practice drill? The player experiments with a new technique (e.g. adifferent stroke
technique) and scores a 53 on this drill, his highest score ever. Can the player be 95%
certain that thisis due to the technique change rather than to random chance? Can he be
90% certain that the score is due to the technique change? How does the sample size
affect these assessments?

Answer: The mean score for the 10 weeks is 48.2. The standard deviation of the sample
set iss=2.52, which is taken as an approximation of the population standard deviation.
The standard deviation of the mean is estimated as s[ X ] 10=s/Sqrt(10)=0.797. Using the
normal distribution approximation, Table 5.1 gives the critical value for an 80%
confidence level asz=1.28. Thereisan 80% chance that the true mean score, which
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would be the long-term mean of the player’s score for thisdrill, is between
X-zS[X]=47.2 and X +ZS[X]=49.2.

The score of 53 is 4.8 points higher than the mean, or 4.8/2.52=1.90 standard
units. The critical value for 95% confidence is z-=1.96, so such a score would be
expected to occur even with no change in stroke technique due to random chance within
the 95% confidence predicted by anormal distribution assumption. For a 90%
confidence z==1.645; such a score would not be expected to occur at this confidence level
due simply to random chance. If the estimates for the mean and standard deviation were
reliable (e.g. if the sample were much larger), then the player could say that he is 90%
certain that the stroke technique change improved his score, but he could not say that he
IS 95% certain. However, thisisafairly small difference based on such a small sample.
Thereis, after all, agood chance that the true mean is as high as 49.2, so ascore of 53 is
only 3.8 points, or 3.8/2.52=1.51 standard units, above the mean, and such a score can be
expected to occur about 87% of the time due to random chance; that is, the player could
say only that heis 13% confident that the score is due to the stroke change. Additional
scores with the original technique would allow for a more accurate estimation of the
population mean, and therefore a more accurate estimation of the effect of the stroke
change in terms of standard units. Thisis one reason why players should establish
practice routines and record their numerical scores over long periods of time; not only
does it alow the player to track his progress, but it also allows for accurate statistical
assessments of technigue and equipment changes.

More exact determinations of the confidence can be achieved with additional data,
including those obtained using the new stroke technique, by comparing the means and
standard deviations of the different data sets (original stroke technique vs. the new one).
When the means are sufficiently different, and when the standard deviations are
sufficiently narrow, then there is a high confidence that the technique changeis
responsible for the score difference rather than simply the expected random fluctuations
in the score. In general, the confidence is determined by the overlap regions of the two
distribution tails. Thistype of comparative analysis can be quantified further with chi-
squared tests (to compare expected and measured distribution statistics), the Sudent’ st-
test (to determine if two samples with the same variance have different means), the F-
Test (to compare sample variances), and with Analysis of Variance techniques (to
determine if two different samples actually are drawn from the same population). These
methods are all outside the scope of this section, but they are mentioned in case the
interested reader wishes to follow up on thisinteresting topic.

Statistical analysis can be used as abasis of choosing from among a set of
possible tactics. This requires estimations of individual shot outcomes. A simple
example of using probabilities to assess tactical optionsis asimple “one-ball” game,
which occurs in actual game situations when, for example, both players are shooting at




the 9-ball in agame of 9-ball, or when both players are shooting at the 8-ball in a game of
8-ball, or when both players are shooting at the black in a game of snooker, or when both
players are shooting at the last ball in a game of one-pocket. In the one-ball game, a
player is faced with a particular shot at asingle ball. If he succeeds, then he wins
immediately, and if he fails then the outcome depends on the outcome of the opponent’s
shot. Asaway of keeping track of the details, such game situations may be represented
with adiagram. The diagram corresponding to the one-ball gameis shownin Fig. 5.2.

(0 (9 (& (7

Fig. 5.2. In the game diagram for the simple one-ball game, there are an
infinite number of nodes. Only the first few are shown explicitly. Player-
1 wins at the terminal nodes Wh and he loses at the terminal nodes Ln .
The transition probabilities are next to the connecting arcs.

In this diagram, the various states (or game situations) are called nodes and are shown by
the circles. The possible state transitions are shown by the lines the connecting the nodes,
and these lines are called arcs. The states labeled by Sh are where the winning ball has
not been pocketed by the nth inning, the states |abeled by W are those where player-1
has won on the nth inning, and the states labeled by Ln are those where player-1 has lost
on the nth inning. Each arc is associated with a particular transition probability. There
are probability weights associated with each state. Sl iscalled the graph head, and Pg1=1
means that the S1 node is the starting point of the game. The weight of any other stateis
given by the sum of the weights of the previously connected state multiplied by the
transition probability associated with the connecting arc. That is, the probability of
arriving at a particular state in the game is the summation of the probability of arriving at
all previous states, times the probability of making a transition from these previous states
to the current state. The states |labeled Wn and Ln are called terminal nodes, or
probability sinks, or tails, since there are no arcs leaving these nodes; the game is over
when the destination is one of these nodes. These game diagrams are a pictorial way of
enumerating all possible paths as the probability density flows from the sources, through
the transient states, to the probability sinks.

In the simple one-ball game depicted in Fig. 5.2, thereis only one probability
source S, an infinite number of transient states S, and an infinite number of probability
sinks Wn and Ln. There are only two arcs leaving each of the S nodes; in more
complicated game situations, there may be several arcs leaving a node, each depicting a
transition to a new possible state or to a previous state. The sum of al of the arc
transition probabilitiesfrom anodeis 1. InFig. 5.2, the successful shots by either player
are labeled pp, and the unsuccessful shots are labeled g, with gh=(1-pn). This general idea
of assigning probability weights to nodes, and to computing these weights from transition
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probabilities has already been used in the recursive agorithm for computing game score
probabilitiesin P5.6.

In the general one-ball game, all of the individual p, values will be different. Itis
interesting to consider some simpler cases in which the shot success probabilities are
assumed to have special relations.

Problem 5.20: Assume that all of the shots taken by player-1 in the game depicted in Fig.
5.2 have a success probability of py, and all of the shots taken by player-2 have a success
probability of py. Interms of these two parameters, what is player-1'stotal probability of
winning, assuming that an infinite number of shotsis allowed in the game? What
combinations of p1 and py lead to a game probability of W=15?

Answer: Thetotal chance of winning is the summation of the node weights Pyw1, Pwa,. ...
By multiplying the appropriate arc weights to get the node weights, the probabilities are
given by Pwi=p1, Pws=q102p1, Pws=(g102)2p1, and so on. Thiswill be called the two-
parameter infinite-look-ahead approximation to the general one-ball game. The
summation is

2
W[¥] = P\Nl+ RN3+PW5+"': pl"'thZpl"'(qloQ) pL...
¥ ¥

=8 Pua-y=a (aw) m=—B—=——
= W(2i-1) = =T = -
Py
Setting WI¥1=Y5 and solving for py in terms of p; gives
pé:rit __h
(2- p1)

When the actual value of py islarger than this critical value, player-2 is expected to win,
and when py is smaller than this critical value then player-1 is expected to win.

A contour plot of WI¥] as afunction of the two parameters p; and py is shown in
Fig. 5.3. Theregion of the contour plot corresponding to small p1 and large p2 isthe
“sell-out” region; shotsin this region should usually be avoided and other shots should be
considered. The area of the contour plot corresponding to large p1 and small py isthe “2-
way shot” region; it isagreat tactical advantage when these shots are available, as
indicated by the large WI¥] values. The area of the contour plot with small p1 and small
p2 corresponds to defensive safety shots; the primary purpose is to keep the opponent
from winning immediately, and to exploit any small advantage in probability over several
innings. It isinteresting to note how sensitive is the game probability estimate W¥] to
small changesin the shot probabilities p; and py in thisregion.
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Fig. 5.3. Contour plots of the W¥] and W2] approximations to the general
one-ball game as a function of the two independent parameters p1 and po.

The W=Y, contours are the same for both approximations.

A particularly important set of values corresponds to W¥1=Y5. The p1 and pp
combinations for which WI¥1>Y; are those in which player-1 is expected to win the
simple one-ball game, and those values for which WI¥1<Y; are those in which player-1is
expected to lose. In this simple game model, p2 will be large either when player-2 isa
very good shotmaker, or when the balls end up consistently in easy positions after a miss
by player-1. Itisclear from this graph that W¥1>Y5 for all values of p, when p1>Y5; this
means that no matter how good of a shotmaker the opponent is, or how easy of ashot is
left after each miss, player-1 isthe expected winner when p1>Y5. Thisis supported also
by the po°'it expression given in P5.20. This advantage is afforded player-1 because he
getsthefirst shot in the game. However, it isstill useful to compare two possible
strategies, even when both of them result in favorable outcomes for player-1. When
p1<¥>, then the expected outcome clearly depends on pp; when py is sufficiently small,
then player-1 is still the expected winner, but when py islarge, then player-1 is expected
to lose.

Problem 5.21: Assume that player-1 in the one-ball game takes hisfirst shot with a
success probability of p1, and that a good estimate of the value of pp is known, but after
these first two shots both players are assumed to have an even chance of winning the
game. Interms of these two parameters, what is player-1'stotal probability of winning?
What combinations of p; and p, lead to a game probability of W=15?

Answer: The game diagram for this approximation to the general one-ball game is shown
in Fig. 5.4. Thiswill be called the two-parameter two-shot-look-ahead approximation.
There are now only two nodes in Fig. 5.4 that correspond to wins for player-1. The game
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probability isthe sum of the weights for these two nodes.

W =Ry + Ry = pr+ 30,
A contour plot of WI2] is shown in Fig. 5.3. When compared to the WI¥] contour plot, it
IS seen that the two approximations give similar, but not exactly equivalent, predictions of
game probabilities.

Rearranging the WI21=1, equation to solve for pp as afunction of p; gives
cit _ P

P2
(2- p1)
which is the same curve of critical values as determined previously for WI¥1,

Fig. 5.4. The two-shot-look-ahead approximation to the general one-ball
game depends on only two independent parameters p; and py that
characterize the shot success for the first two innings. After the second
inning, the game outcome probability is split equally between the two

players.

If three independent shot parameters are known, then this leads to a three-shot-
look-ahead approximation, and in general there are n-shot-look-ahead approximations
involving n independent probability parameters. It should be stressed that both the two-
parameter infinite-look-ahead and the two-parameter two-shot-look-ahead equations are
approximations to the general one-ball game; one of these should not be regarded as an
approximation to the other. In some situations, the infinite-look-ahead assumption may
be more appropriate, while in other situations the two-shot-look-ahead assumption might
be best. For example, if player-1isaweaker player than player-2, then from arelatively
neutral position the infinite-look-ahead model with alarge p2 value would provide the
most reliable estimates of game outcomes; but if both players are roughly equal in ability,
and if player-1 has a decided positional advantage for hisfirst shot (e.g. a strong 2-way
shot corresponding to alarge p1 and asmall py), then the two-shot-look-ahead model
would provide the most reliable estimates of game outcomes.

If two players are playing a multigame 9-ball match (or, for example, 8-ball or
one-pocket), then the opening break shot is usually regarded as an advantage. Matches
are sometimes played in which the winner of each game is rewarded by being allowed the
opening break in the next game (winner-breaks), or they may be played where the |oser
of one game breaks in the next game (loser-breaks), or the players may alternate breaks
from game to game, or one of the players may break al of the games (e.g. player-1
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breaks; thisis usually regarded as a handicap advantage for the breaking player to
compensate for some difference in skills). Thislast situation isinteresting in the context
of the above analysis of the one-ball game. Suppose that player-1 breaks each game, and
that he wins each of these games on hisfirst inning with a probability of p;. Inthe
second inning, player-2 wins with a probability of p2, and so on. The game diagram for
this situation is the same as for the one-ball game. The nodes of the diagram correspond
to inning counts rather than individual shots, and the winning probabilities are with
respect to games rather than individual shot successes, but the mathematical structureis
the same for both situations. The infinite-look-ahead and the two-shot-look-ahead
approximations, and the discussions of these two parametersin P5.20 and P5.21 apply
also, in a perhaps more approximate way, to this multigame match situation. With these
approximations, the contour plotsin Fig. 5.3 show that player-1 would be expected to
have an advantage over player-2 by virtue of playing the first inning, and this advantage
becomes more significant for larger values p;.

Problem 5.7: Using the game probability estimates WI¥] and WI2], compute the
probability for player-1 to win when (p1,p2) have the values: (0.1,0.9), (0.9,0.1), (0.9,0.9),
(0.5,0.5), (0.25,0.33), (0.4,0.8), and (0.3,0.3).

Answer: The game probability estimates are given in the following table

p1 p2 W¥] W2]
0.1 0.9 011 0.15
0.9 0.1 0.99 0.95
09 09 0.90 0.90
0.5 0.5 0.67 0.62
0.25 0.33 0.50 0.50
0.4 0.8 0.45 0.46
0.3 0.3 0.59 0.55

The (p1,p2)=(0.1,0.9) shot is a sell-out shot. Player-1 is expected to lose this game, even
with the first-shot advantage; he should consider another choice of shot. The (0.9,0.1)
situation is a strong 2-way shot; player-1 isthe favorite in thisgame. For (0.9,0.9),
player-1isagain the favorite. Even though p1 for this case is the same as the previous
one, itisclear that it is better to plan to leave a low-percentage shot for the opponent than
a high-percentage one (i.e., WI¥1=0.99 is better than WI¥1=0.90). For the (0.5,0.5) shot,
player-1 is the expected game winner using both estimates, even though he and his
opponent are evenly matched with equally difficult shots; thisis due to the first-shot
advantage. The (0.25,0.33) shot corresponds to a (p1,p2°it) pair, so each player has equal
probability of winning according to both estimates.

Player-1 has a disadvantage at (0.4,0.8) and afairly significant advantage at
(0.3,0.3) using both estimates of the game probability. It isinteresting to compare these
last two situations, since it appears to be a paradox to many inexperienced pool players.
In both cases, the individual shot probability p; isrelatively small. Infact, py issmaller
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for the second (favorable) game outcome than for the first (unfavorable) game outcome.
In thefirst case, he leaves a high-probability shot for his opponent, while in the second
case he leaves alow-probability shot. Inexperienced players often choose shots based
only on their estimate of the first-shot success probability, that isonly on p;. Thisisan
example of how the down-side consequences (what occurs after the miss) outweigh the
up-side reward (which shot has the higher p1). In other words, it is sometimes more
important not to “sell out” than it isto try to succeed with a spectacular shot. In “tactic-
rich” games involving relatively difficult shots, such as one-pocket, this kind of decision
is part of the routine shot-selection process. The simple one-ball game mathematical
model used here provides an approximate way to quantify the relative importance of the
up-side reward and the down-side consequences for these more complex situationsin
actual pool games.

In physical simulations, processes that may be characterized by probabilities are
called stochastic systems, and an important class of stochastic systems, called Markov
processes, are those in which the probability of making atransition from one state to
another depends only on theinitial and final states, and not upon a history of the previous
states. The game diagrams described above are examples of Markov processes. One way
to analyze these types of diagramsisto consider them as a“time dependent” process. In
some situations, it is the transient short-time behavior that is of importance, and at other
timesit is the long-time steady-state behavior that is most interesting. 1n the above game
diagrams, the “time” parameter corresponds to the inning count, or to the shot count, or,
aswill be discussed below, to agame count. Aninitial probability distribution is
assigned to the nodes of the graph, and this probability density flows through the graph as
individual time steps are taken. The information that is most important in the pool-game
situation is how much of this probability density ends up in the various terminal nodes.

In the above examples of game diagrams, it was possible to answer this question by
recognizing relatively simple algebraic simplifications that allowed closed-form
expressions to be obtained. But in more complicated situations, such closed-form
expressions may not be apparent, or they may not even exist. Inthese situations, it is still
possible to extract the long-time steady state probability densities numerically, and this
general procedure is now discussed.

& A
ORI

Fig. 5.5. The game diagram for the two-parameter infinite look-ahead
approximation to the general one-ball game consists of four nodes: two
terminal nodes and two transition nodes.
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This procedure will be applied first to the one-ball game so that the results can be
compared to those previously found. The two-parameter infinite |look-ahead game
probability will be examined. For this purpose, it is convenient to use asimpler game
diagram, shown in Fig. 5.5, that has only a finite number of nodes (four in thiscase). In
this diagram, all of the winsfor player-1 are treated equivalently, with a single terminal
node, and likewise al loses for player-1 are treated with a single terminal node. The two
transient states are related simply to which player is shooting the shot. The important
guantity in Markov analysisis the probability transition matrix. The rows and columns
of this matrix correspond to the states of the system, and therefore to the nodes of the
game diagram. The element Mj; corresponds to the arc weight of the arc that connects
nodej to nodei; that is M;j is the probability of making atransition from the state
corresponding to node j to the state corresponding to nodei. Nodes that are not
connected correspond to zero Mjj values. Termina nodes are assumed to make
transitions to themselves each time step with unit probability. The transition matrix
corresponding to the two-parameter infinite-look-ahead approximation to the one-ball
gameis

55 g0

M= go . qO2 0+

e0 0 py 1o
The rows and columns of the matrix correspond to the nodes W, Sl, &, and L,
respectively. The sum of the elementsin a column of M is one, which reflects the fact
that probability density is not destroyed by taking atime step. The vector-matrix product
relation (1,1,1,1)M=(1,1,1,1) is a consequence of this, and such arelation is aways
satisfied for a Markov transition matrix. This means that there exists at |east one left
eigenvector of M that corresponds to an eigenvalue of one, and therefore there also must
exist aright eigenvector with this same eigenvalue; the existence of this unit eigenvalue
isimportant in thisanalysis. Let «=(1,1,1,1) be this left eigenvector and v0 be an
arbitrary column vector, then the dot product xv0 is equal to the sum of the elements of
v0. The vectors of interest correspond to probability densities, and such vectors contain
only nonnegative elements that sum to one. A single time-propagation step from an
initial vector v0 is given by the matrix-vector product v1=Mv0. Operating on the left of
this equation with k gives the result «v1=xv0=1, which means that the sum of the
probability density after the time step is the same as the sum before the time step. After
two steps, the density is given by v2=Mv1=M2y0, and after n steps the density is given by
vi=Mv(-D=Mm0, Operating on the Ieft by k on any of these relations shows that the
total density is conserved aways by the propagation operations.

What does the vector v ook like after alarge number of steps? The answer
depends on the eigenvalues of the matrix M. In general the right eigenvectors of M
satisfy the equation MR=RA in which the right eigenvectors form the columns of R, and
the diagonal matrix A contains the corresponding eigenvalues. This allows the matrix M

91



to be written as M=RAR-L. The matrix M2 is given by M2=RAR-1RAR-1=RA2R-1, and
in general MN=RANR-1 with

&1 0 0 06
S0 A% o o+
g0 0 A3 oz

e0 0 0 Ao
This expression allows the probability distribution after an arbitrary number of time steps
to be determined with relatively little effort, compared to the straightforward approach
using repeated multiplications. The rows of the matrix L=R-1 are the | eft eigenvectors,
and, with the appropriate choice of normalization, one of these rowsisk=L[1. If A;=1,
then A;"=1 for all n, and if |Ai|<1, then A;"® 0 asn® ¥. For the transition matrices
associated with game diagrams, the eigenvalues are -1<A;£1. This allows the vector limit
after an infinite number of time steps, called the stochastic limit, to be written as

(M=)
V¥ = M¥\0 = RA¥R-1v0 = RA¥L\O = é_ Ri(LivO)
|

in which the summation includes only the right and left eigenvector pairs that correspond
to eigenvalues of unit magnitude. In many cases, thereisonly asingle eigenvalue in this
summation, and in this case v¥=R1(xv0)=R1, where R1 is the right eigenvector
associated with the single eigenvalue of unit magnitude (and scaled appropriately to
conserve density). In this case thereisasingle stochastic limit v¥ that is approached for
any arbitrary starting density V0. In other cases, there may be more than one such vector
in the summation, in which case the final stable probability distribution depends on the
starting distribution V0. It may be verified that M¥M¥=M¥, and therefore M¥ isa
projection operator; it operates upon an arbitrary probability density distribution and
projects this vector onto the subspace of the stable state distribution(s).

In the specific case of the two-parameter infinite-look-ahead approximation to the
one-ball game, the eigenvalues of M are (1,1, /40y - /0udo ). There aretwo
eigenvalues of unit magnitude. The matrix M¥ is given by

P PLd2 ij
¢ L-a%k 1-qp -
QO 0 0

0 0 0 _
Y P2 1+
e l-q l-qp o

AL

M¥ =

| Problem 5.23: Given an initial probability distribution of v0=(0,1,0,0)T, compute vi, v2, |
|v3, v4, v5, and v¥. What are these same vectors for w0=(0,0,1,0)T? What is the |
| stochastic limit for the vector (0,%5,%,,0)T? What is the meaning of these three limits? |
| Answer: For v0=(0,1,0,0)T, the first few vectors are |
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Thefirst element of these vectors, which corresponds to the probability that player-1 will
win the game after the appropriate number of innings, is seen to be the same as the series
of cumulative probabilities computed in P5.20, and the corresponding element of the v¥
vector agrees also with that from P5.20. Although the 4-node game diagram in Fig. 5.5
seems simpler than the infinite-node diagram in Fig. 5.2, the step-by-step propagation of
the 4-node density vector gives the same information as the more complicated game
diagram. It may also be noted in this example that the sum of the densities for the four
nodes aways adds up to 1.

For w9=(0,0,1,0)T, the first few vectors are

85 20 s & P% 6 g 0p(1+cu0p)6

0z epo epo ep(ltam)e e py(l+qa) o
2 pop(1+qdp) 8 ?%9
C 23 - 2+
w® = 04512 +,andw¥=M¥W0=<} o T
§p2(1+Cqu + ()5 & P2 %
el- o2
For the (0,¥2,%,0)T vector, the stochastic limit is
ap(1+0y)6
o 1 -
M¥g§i:%M¥(VO+WO):%Q 8 —
&0o e Po(1+a):
el-oqq o

For the VO case, player-1is given the first shot of the game, and consequently the first
chance to win, whereas in the w0 case player-2 is given the first shot. For this game
diagram, there are two eigenvalues equal to one, so there are two possible independent,
asymptotic stable solutions for these two initial conditions, v¥ and w¥. The same game
diagram, and the same Markov analysis, covers both situations. The (0,%2,%5,0)T initial
probability distribution corresponds to the alternating break situation, or perhaps to some
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other situation in which each player has the first shot an equal number of times.

In this simple approximation to the one-ball game, closed-form expressions could
be found for al of the eigenvalues and eigenvectors, but in more complicated game
situations this may not be true. If only anumerical solution is possible, then the
asymptotic stable solutions can be found for any initial density vector by computing the
eigenvalues and eigenvectors of the transition matrix numerically.

In the winner-breaks match situation, a player with a strong break advantage has
the opportunity to break and win several consecutive gamesin arow. This may occur
because the player breaks and runs, never allowing the opponent to have a shot, or it may
be because the player is agood tactical player and he never allows his opponent an open
shot on awinnabletable. The winner-breaks match situation amplifies the break
advantage in this case through a positive feedback situation. In aloser-breaks match, the
player with the break advantage cannot exploit it because when he wins one game, his
opponent getsto break, nullifying the break advantage. In this case the break advantage
is damped through a negative feedback situation. The following problem shows how this
feedback situation can be quantified.

Problem 5.24: Two players are playing a series of 9-ball games, and the winner of one
game breaks in the subsequent game. When player-1 breaks, player-1 winswith a
probability of p;. When player-2 breaks, player-2 wins with a probability of po. What
fraction of the total gameswill player-1 win if alarge number of games are played? If
the loser of one game breaks in the next game, what fraction of the total games will
player-1 win? What is the expected outcome in the alternating break situation?
Answer: The game diagrams for the winner-breaks (WB) and for the loser-breaks (L B)
situations are:

There are two states of interest, S1 is when player-1 breaks and 2 is when player-2
breaks. The corresponding transition matrices are:

MWB §Q)l q26: MLB = iﬁll P26

e o ep GO

For both of these situations, closed-form solutions can be found for the eigenvalues and
eigenvectors. The eigenvalues for the two cases are (1,p1+p2-1), and (1,1-p1-p2),
respectively. In both cases, thereis only asingle eigenvalue of unit magnitude, so each
situation has a single asymptotic distribution given by v¥=R1 for any choice of initial
density vO. This meansthat it does not matter which player hasthe initial break in the
match; the long-run winner is determined only by the two probability parameters p; and
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p2 and by the match type, WB, LB, or AB. For the WB and LB cases, the R1
eigenvectors are, respectively,

& & o & P2 06
R‘l"’B=g°ﬂ+QZj,andR1LB=gpl+p2j
eq +0p 2 ep+p o

In the WB case, player-1 wins afraction of games corresponding to WWB=R;WB=
go/(01+0q2); in the LB case, the fraction of games won by player-1is WLB=R,,LB=
P/(P1+p2).

In the alternating-break situation, player-1 breaks half of the games, and proceeds
to win the fraction p; of these, and player-2 breaks the other half of the games, and
player-1 wins the fraction g» of these games. Thetotal fraction of games won by player-1
istherefore (p1+q2)/2 in the aternating break situation.

Contour plots of the winning probabilities WWB, WLB and WAB determined from
P5.24 are shown as afunction of p; and pz in Fig. 5.6. Itissurprising how different these
plots appear. It may be verified that the critical values of p1 and pp that correspond to
W=Y5 are the samein the WB, LB, and AB matches, namely W=Y, when p1=p2 in all
three cases; this means that the break choice is not expected to change the eventual
winner, provided alarge number of games are played in the match; however the margin
by which the winner is expected to win can depend in a significant way on the match
format due to the interplay between the positive and negative feedback effects. This
means that in a match that is handicapped by payout stakes can depend in a significant
way on the break choice. When p1=qp, then the player-1 game probability does not
depend on which player breaks, and there is no break advantage or disadvantage; this
relation is equivalent to p1+p2=1, and it may be verified that WWB=WLB=WAB=p, in all
three match situations when this condition is satisfied.

A contour plot of the difference probability, WAiIff=WMWB-WLB  js also shown in
Fig. 5.6. The solid positive contour lines correspond to the situations in which player-1
has the best chance in aWB match, and the dashed negative contour lines correspond to
the situations in which player-1 has the best chancein aLB match. Itisclear inthis
figure that there can be significant differences in the outcomes of the WB and LB
matches. In most situations, the individual probabilities are expected to be close to 0.5
for both players, and the difference contour plot in Fig. 5.6 shows that the break choice
makes only asmall difference in the outcome in these situations. However, the most
drastic differences occur when one of the players has a strong break advantage or
disadvantage. Table 5.4 givesthe player-1 winning probabilities for a few selected
values of p1 and pp that demonstrate these trends.
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Fig. 5.6. Contour plots of the player-1 winning game fraction W for three
types of matches: winner-breaks, loser-breaks, and alternating breaks. The
p1 parameter is the fraction of games that player-1 wins when player-1
breaks, and po is the fraction of games that player-2 wins when player-2
breaks. When the contour lines are closely spaced, then the winning
fraction Wis very sensitive to small changes in the parameters p1 and py.

The first three rows of Table 5.4 correspond to equally matched players. In the
first row, both players might be weak runout players, or weak tactical players, who tend
to lose most of the games that they break, and both players have a break disadvantage; in
the second row both players win the same percentage of games that they |ose when they
break, and neither player has a break advantage or a break disadvantage; in the third row,
both players might be strong runout players, or strong tactical players who tend to control
the table once they get a shot, and the break is an advantage that can be exploited by both
players. Matches between equal-strength players are expected to be even in WB, LB, and
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AB situations, as seen in the first three rows. The next two rows show the expected result
from a strong mismatch; in the fourth row player-1 is the underdog, and in the fifth row
he is the strong favorite. Since p1+p2=1 in these two cases, there is no break advantage
and the winning expectations are equal for all three match situations.

Table 5.4. Comparison of WB, LB, and AB winning probabilities.

Row p1 P2 WWB WLB WAB
1 1 1 5 5 5
2 5 5 5 5 5
3 9 9 5 5 5
4 1 9 1 1 1
5 9 1 9 9 9
6 5 1 64 .83 7
7 5 9 17 .36 3
8 9 5 .83 64 7
9 1 5 .36 17 3
10 95 %4 .54 50 505

Rows six and seven are two cases in which moderate mismatches occur and in
which player-1 is the medium-strength player. Inrow six, heisfavored to win over a
weak opponent in both WB and LB match situations, but he is expected to win amuch
higher fraction of games in the LB match than in the WB match. Thisis becausein the
LB situation, player-1 can win one game and then take advantage of his opponent’s
breakshot weakness immediately in the next game by forcing him to break. The AB win
fraction is between those of the WB and LB, and this trend holds for all combinations of
the parameters p; and py. In row seven, player-1 is amedium strength player playing
against astrong player; heis expected to lose in al three types of match situations, but
his game percentage is about twice as large in the LB match asin the WB match. Thisis
because he breaks more often than his stronger opponent in the LB situation, and
although he does not benefit particularly from his own breaks, he keeps his opponent
from exploiting his break advantage. The last two rows show the same types of
mismatches as rows six and seven, but with the assumption that player-1 is the strong
player (row eight) or the weak player (row nine) against a medium strength player; in
both cases, a WB match situation is most beneficial to player-1. Inrow eight, player-1
benefits in the WB situation by exploiting his break advantage. In row nine, player-1is
actualy penalized by being forced to break, and he breaks fewer times in the WB
situation than in the LB situation which helps him limit his loses.

Row ten shows the expected results for two strong players who are closely, but
not exactly, matched. Player-1 hasavery slight 1% win-while-breaking game probability
advantage over that of his opponent. It isinteresting that in the WB match, this small
advantage is magnified into a 4% difference in the expected game fraction, whereas in the
LB match, the effect of this small advantage is aimost eliminated in the expected game
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fraction. Inthe AB match, the 1% p advantages gets diluted to a 0.5% W advantage. The
amplification of small differences of WB matchesis a consequence of the clustering of
the contour lines in the upper right corner of the WWB graph in Fig. 5.6. Similarly, the
damping out of such differencesin the LB situation is a consequence of the wide spacing
of the contour lines in the upper right corner of the WLB graph. When player-1 has a
dlight breakshot advantage over his strong opponent, then he should prefer the WB
situation, but when he has a slight breakshot disadvantage compared to his strong
opponent, then he should prefer the LB situation.

Problem 5.25. Two players play a stakes-handicapped match in which player-1 wins 1.0
points for each game that he wins and he loses 2.0 points for each game that he loses.
The win-while-break percentages for the two opponents are p1=0.9 and p>=0.5. What is
the expected outcome for WB, LB, and AB matches?
Answer: The expectation of return R by player-1 for each gameis given by

R= WXZW - L XZL
where W is the probability of winning each game, Zyy is the number of pointsthat he wins
for each of these games, L=(1-W) is the losing game probability and Z,_ is the number of
points that he loses. Using the results from Table 5.4, it is seen that
RWB=(.83)(1.0)-(.17)(2.0)=0.49, R-B=(.64)(1.0)-(.36)(2.0)=-0.08, and
RAB=(.70)(1.0)-(.30)(2.0)=0.10. Player-1 isexpected to win in the WB match and AB
match situation, but he is expected to lose in the LB match situation.

Fig. 5.7. The genera game diagram for a progressive drill hasn nodes and
n independent probability parameters.

A progressive practice drill has a difficulty parameter that can be increased or
decreased. A difficulty parameter might be a shot angle, or a shot distance, or some cue
ball position goal, the number of object balls, or some combination of such parameters.
In aprogressive practice drill, when the player succeeds at one level of difficulty, then he
isrewarded by being allowed to attempt the next level of difficulty; when the player fails
at alevel of difficulty, then heis penalized by being forced back to the previous level.
Suppose that there are n levels of difficulty, numbered 1...n. Failure at thefirst level
means that the player attempts that level again, and success at the nth level means that
level-n is attempted again. Suppose that the probability of success at theith level is
denoted pj, and the failure probability is therefore gi=1-p;. The game diagram for a
general progressive practice drill isshown in Fig. 5.7. The Markov transition matrix for
such aprogressive drill has the form
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Thismatrix form is called atridiagonal matrix because the only nonzero elements occur
in the diagonal or in the elements adjacent to the diagonal. A property of such a
tridiagonal matrix isthat for O<pj<1, there are no repeated eigenvalues; in particular,
thereisasingle eigenvalue of unity, and therefore there is a single stable probability
distribution for aprogressive drill. If apractice drill is performed for alarge number of
steps, then this unique distribution will be approached in the stochastic limit, and the
statistical parameters associated with this distribution can be used to assess the player’s
performance at the drill.

Model Progressive 9-Ball Distribution
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Fig. 5.8. The components of the stochastic limit distribution v¥ are plotted
as afunction of the shot-success parameter p for the model progressive 9-
ball drill with pji=p(-1). The distribution changes significantly as a
function of p, and this means that the distribution is a sensitive measure of
performance.

| Problem 5.26: In the progressive 9-ball drill, the player starts by throwing the 9-ball |
| randomly on the table, taking the cue ball in hand, and shooting the 9-ball. Upon succeﬁs,|
|the 8-ball and the 9-ball are thrown on the table and the player attempts to run both balls |
|from ball in hand. In general, a successful run of i balls means that arun of i+1 ballsis |
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attempted, and afailure at arun of i balls means that, on the next turn, arun of i-1 ballsis
attempted. Assume that the probability of success for i ballsis pi=p(i-1) wherepisan
average probability of making an individual shot. What is the expected distribution for p
equal to 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.99? What are the mean, median, mode, and
standard deviations for each of these distributions?

Answer: The expected distributions are the stochastic limit v¥ which is determined from
the right eigenvector R1 of the matrix M¥ associated with the eigenvalue A=1, and scaled
so that the elements total to unit probability. The coefficients of Ry are plotted as a
function of the shot success parameter p in Fig. 5.8. These probability distributions for
the specific values of p are given in Table 5.5, along with the associated statistical
parameters. Because the distribution changes significantly with small changesin p, it
provides a sensitive assessment of performance.

Table5.5. Model Progressive 9-Ball Drill Statistics

p | d d d3 d4 d5 dg dy dg dg X  Mode X c

5| 210 419 280 .080 .011 .001 .000 .000 .0000 2264 2 2 920
6| 138 346 .324 .149 .037 .005 .000 .000 .000 2618 2 3 1051
7| 069 231 318 237 107 .031 .006 .001 .000 3200 3 3 1236
8| 018 .088 .195 256 .222 .135 .060 .020 .009 4354 4 4 152
9] 000 .004 017 .052 .110 .177 223 227 190 6964 8 7 1567
95 .000 .000 .000 .002 .011 .038 .112 272 569 8333 9 9 928
99| .000 .000 .000 .000 .000 .000 .005 .076 .91 8912 9 9 306

Exercise5.1. Practice the progressive 9-ball drill over an extended period of time and
accumul ate the data for the number of successes and number of failures at each level.
From these data, an empirical value of the success probability p; at each level can be
estimated. Use these empirical values and determine the corresponding stochastic limit
distribution. Compare this hypothetical distribution to the actual distribution, which
consists of the total attempts (successestfailures) at each level. If there are significant
differences, then this shows where the most significant improvements in performance are
possible. For example, if there seem to be too many small-i attempts, then additional
focus may be needed for these “easy” cases, or there may be some intimidation on the
long run attempts.

Almost any kind of shot or game situation may be turned into a progressive drill
and subjected to this kind of stochastic analysis. For example, for 8-ball, the player
might throw out an equal number of stripes and solids along with the 8-ball, take ball in
hand, and attempt to run out. Upon success, one more ball of each type isthrown out at
the beginning, until all 15 balls areinitially on the table.

In the National Pool League (NPL) handicap system (see, for example,
http://ww. accessone. com ~mavl on/ handi cap. ht m ), each player hasa
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numerical skill rating estimate. If Ry and Ry are the skill ratings for two opponents, then
the probability p that player-1 will win an individual game is assumed to be given by
1

P =1 > (R- R0
or, equivaently, the rating difference between two opponents satisfies the relation

Ri- Ry = —2 g PO

log2 “el- pe
Skill ratings range from about 20 for beginners to around 80 for experienced amateur
playersto over 130 for professional-level players. Each additional rating difference of 30
points results in another factor of two in the ratio of game probabilities p/g. Matchups are
chosen based on the analysisin P5.5. In general, for agiven p1, The match probability
W(p;m,n) is determined for values of m+n that are reasonable for tournament play, and
the combination that gives the match probability closest to W=0.5 is chosen. The
following table contains four sets of matchups. Chart-8 is used for short matches when
the time for each match needs to be minimized, Chart-10 is used for regular length
matches, and Chart-12 is used when longer matches can be played. In some situations,
short charts are used for lower-rated players and longer charts are used for higher-rated
players. Longer and shorter charts than those shown here may also be used in particul ar
league or tournament situations. Chart-20 is avery long match chart and isincluded for
comparison purposes. When a player wins amatch in the NPL system, his skill rating
increases by a point, and when a player loses a match his skill rating decreases. Because
of this adjustment, the skill rating estimate tends to fluctuate somewhat about a mean
value that reflects the player’ s true skill rating. The skill rating value may be used to
label the states in a game diagram, and because transitions are allowed only between
nearby states, the game diagram for the NPL handicap system isthe same asfor a
progressive drill as shownin Fig. 5.7, and the corresponding Markov transition matrix is
tridiagonal.

In order to perform a stochastic simulation of the NPL handicap system, itis
useful to introduce afew simplifying approximations. It is assumed that a particular
player of interest, player-1, has atrue skill that corresponds to a skill rating of RActual,
He plays against an infinite number of opponents, all of whom have skill ratings that also
correspond to ROpponent=RActual - As player-1 plays against these opponents, his skill
rating estimate will fluctuate about RACta At any particular time player-1's apparent
skill rating will be denoted RAPParent |t js RAPParent that is used to determine the game
matchup, using the chartsin Table 5.6, but the actual game probability is determined by
RActual_ROpponent=Q, For example, suppose that a tournament is using Chart-10, and the
apparent rating difference is 5 points, which means that the matchup is 5:5.
W(0.5;5,5)=0.5 then defines the transition probability for player-1 to advance to the next
higher skill rating, and (1-W(0.5;5,5))=0.5 defines the probability for the player to fall
back to the next lower skill rating. If player-1 wins this match, the apparent skill rating
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difference for his next match will be 6 points and the next matchup will be 5:4. From
P5.6 it is seen that W(0.5;5,4)=0.363. Player-1isnow overrated and is more likely to lose
this match than to winit. Similarly, when player-1 loses enough matches his apparent
rating will be 6 points too low, the match probability will be W(0.5;4,5)=0.637. At this
point, player-1is underrated and is more likely to win than to lose. According to this
mechanism, the player has a tendency to fluctuate about his true skill rating; if his
apparent rating getstoo low there is atendency for him to start winning a majority of his
matches and for his rating to adjust up back to its correct level, and if his apparent rating
getstoo high there is atendency to lose a mgjority of his matches and for hisrating to
adjust back down to its correct level.

Table 5.6. Examples of four charts used in the NPL handicap system.

Chart-10 Chart-8
Rating Difference Match Games Rating Difference Match Games
0-5 5:5 0-6 4:4
6-14 5:4 7-18 4:3
15-21 6:4 19-29 5:3
22-28 5:3 30-39 4:2
29-36 6:3 40-48 5:2
37-46 7:3 49-up 6:2
47-56 6:2
57-up 7.2 Chart-20
Rating Difference Match Games
Chart-12 0-2 10:10
Rating Difference Match Games 3-7 10:9
0-4 6:6 8-12 10:8
5-11 6:5 13-17 11:8
12-17 7:5 18-22 11:7
18-22 6:4 23-27 12:7
23-28 74 28-33 12:6
29-35 84 34-36 13:6
36-42 7.3 37-40 14:6
43-48 8:3 41-45 13:5
49-58 9:3 46-51 14:5
59-68 82 52-59 14:4
69-up 9:2 60-68 16:4
69-75 15:3
76-77 16:3
78-87 17:3
88-97 16:2
98-100 17:2
101-up 18:2

Fig. 5.9 shows the stochastic distributions v¥ for the four chartsin Table 5.6 with
the above assumptions. These are called the natural distributions because they depend
only on the granularity introduced by the matchups. In general, it is seen that there are
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two components to the widths of a given distribution. One component is the flat region at
the top which is due to the W=0.5 transition probability for near-zero apparent rating
differences. Thisflat region iswider for the shorter-match charts than for the longer-
match charts. The other component of the width is the falloff that isinduced by the
matchup differences. This component would occur even for longer matches than shown
inFig. 5.9, but in general the falloff is more rapid for longer matches than for shorter
matches, as discussed in P5.7. The Chart-20 distribution displays both characteristics of
the long-matches: a narrow flat region and arapid falloff.

NPL Handicap Natural Distribution
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Fig. 5.9. The natural distributions v¥ of rating variations are shown for
four NPL charts. The variations away from the correct rating are
relatively small in all cases, but the peak is sharper generaly for longer
matches than for shorter matches.

An improved simulation can be achieved by relaxing some of the simplifying
approximations used in the preceding stochastic analysis. One approximation is that the
opponents’ skill ratings are estimated exactly. It can be assumed that thereisa
probability distribution {d;} of actual skill ratings for the opponents. Player-1 has an
actual skill rating of RACtuUal gnd an apparent skill rating of R; ; the opponent has an actual
skill rating of R , occurring with probability dj, and an apparent skill rating of RActual
The probabil itg for player-1 to win a match is then given by the expression

Wi = @ dW(pj;m.n)

J
in which pj is determined by the actual skill difference (RACtua'ﬂ) and the matchup mj:nj
is determined by the apparent skill difference (Rj-RACtual), Thiskind of expression
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involving summations of probability distributionsis called a convolution. The question
then arises as to what opponent distribution {d;} should be used. An obvious answer isto
use the same distribution for both the opponents and for player-1. Thisdistributionis
determined in a self-consistent manner. Some reasonable approximation for {d;}is
assumed, and the corresponding stochastic distribution v¥ for player-1 is determined
from the eigenvalue analysis of the transition matrix. This stochastic distribution then
defines anew {d;}, which then results in a new transition matrix, which then resultsin a
new stochastic distribution. After afew cycles of this process, the input distribution {d;}
converges to the same as the output stochastic distribution v¥, and self-consistency is
achieved. This processin which the stochastic distribution depends on itself is called
autocorrelation. In the case of the NPL handicap distributions, this has a very small
effect, too small to notice the difference when plotted asin Fig. 5.9. The standard
deviation for the Chart-8 distribution widens from 4.963 for the natural distribution to
4.978 with autocorrelation, for Chart-10 it widens from 4.634 to 4.654, for Chart-12 it
widens from 4.269 to 4.291, and for Chart-20 it widens from 3.668 to 3.697. Further
improvements in the simulation require additional assumptions about the distribution of
actual and apparent skill ratings for the opponents, and about the day-to-day and match-
to-match fluctuations of actual skill that al playersdisplay. Ingenera, al of these
effects tend to smooth and widen the stochastic distributions compared to the natural
distributions shown in Fig. 5.9 and to the autocorrel ated distributions described above.
For the efficient numerical treatment of the convolution of several distribution variables,
methods based on Fourier transforms are usually employed.

In addition to the matches of limited length that have been analyzed previously in
this section, another common type of match is the n-ahead match. The players keep
playing games until one of them manages to get n games ahead of the other player, and
this terminates the match. It is also possible to handicap such a match, so that one of the
players needs m games ahead to win, while the other player needs n games. The game
diagram for a general handicapped n-ahead match is shown in Fig. 5.10. For a match of
this type handicapped at m: n, the game graph has (m+n+1) nodes, m of which are on one
side of the starting node SO, and n of which are on the other. It is assumed that the
probability of winning an individual game is independent of the score, and for simplicity
it is assumed that the breaker of each game does not affect the game probability, although
it is straightforward to incorporate differing probabilities for these situations if such data
isavailable. The Markov transition matrix for the n-ahead game always has two
eigenvalues of unity; this may be verified by expanding the secular equation in cofactors
and minorsfirst along the first column (corresponding to the losing node L), and then
along the last column (corresponding to the winning node W), exposing two (1-A) factors
in the characteristic polynomial. The following problem shows these general features for
a specific game diagram, but the general approach can be applied to any n-ahead type
match situation.
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Fig. 5.10. The game diagram for a genera handicapped n-ahead type
match is shown. From the starting node &, player-1 needs m games to
win the match and player-2 needs n games.

Problem 5.27: Two players play a handicapped 3-ahead type match. Compute the
player-1 match probability W as afunction of p, the probability of winning an individual
game, if the match is handicapped at 1.5, 2:4, 3:3, 4:2, and 5:1.

Answer: There are 7 nodes in the game diagrams for al of these cases, and the Markov
transition matrix M for all of these casesis given by

d qg 0 0 0 0O Op
g0 0 g 00 0O,
O p0O g0 0O
M=% 0 p 0 g 0 OF
¢cO 0O 0O p O g 0+
¢cO 00O 0O p O O+
€0 00 00 p 1o

The different handicaps correspond to different choices for the initial probability. The
1:5 match corresponds to the vector v0=(0,0,0,0,0,1,0)T, the 2:4 match corresponds to
v0=(0,0,0,0,1,0,0)T, the 3:3 match corresponds to v0=(0,0,0,1,0,0,0)T, the 4:2 match
corresponds to v0=(0,0,1,0,0,0,0) T, and the 5:1 match corresponds to v0=(0,1,0,0,0,0,0)T.
The eigenvectors and eigenvalues of this matrix can be determined in closed form. The

stochastic limit for this match situation is determined from

5 3 5

@ (1- pa)(1- 3pg) - p° (1- pa)(i- 3pg)- p* _ g g’ q o
M¥ = go (- pq)gl- 3pq) - pq)g- 3pg) (L gpq) - pq)gl- 3pa) - pq)gl- 3pq) o
<0 0 0 0 0 0 0.
0 0 0 0 0 0 0
50 0 0 0 0 0 0+
€0 05 04 03 _ E) 44 _ _O _ 4D O:
fo p p p° (- pa)t-3pg)-qg° (1- pa)1- 3pa)-g°
e (1- po(1- 3pa) (- pa)L-3p))  (1-3pg)  (1- pa)i- 3pa) (L- pa)1- 3pa) o

from which it is seen that the match probability for the various cases are given by
relatively smple ratios of polynomials. These probabilities are plotted as afunction of p
for the various match situations in Fig. 5.11. Note that Fig. 5.11 could have been
determined numerically even if closed-form expressions for M ¥ were not available.
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N-Ahead Match Probabilities
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Fig. 5.11. Match probability W as a function of the player-1 game
probability p for n-ahead matches handicapped at 1.5, 2:4, 3.3, 4:2, and
5L
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Acknowledgments: Much of this material has been compiled over a long period of time.
The author first became interested in the physics of pool during a college physics course
(not an uncommon occurrence). Some more recent material has been added as a result of
ongoing discussions in the newsgroup rec.sport.billiard involving many
participants. This newsgroup is highly recommended to anyone interested in discussions
involving the various aspects of pool and billiards games.

Further Reading: Considering that many important and interesting aspects of pool and
billiards may be understood with only simple application of classical physics, and that
quite useful results can be obtained even with rather crude approximations, there has been
traditionally relatively little physics included in most instructional pool books. Simple
physics problems involving pool balls are often included in problem sets in physics text
books, but these are not discussed usualy in the context of using the results in actual
play, but rather as a device to teach a physical principle or in the application of an
analytic method. Some of the exceptions to this trend are the regular columns by Bob
Jewett in Billiards Digest. Another good publication is the book “The Physics of Pocket
Billiards” by W. C. Marlow. While this present manuscript concentrates mostly on
theoretical relations combined with practice exercises, Marlow’s book includes
descriptions of experimental setups to measure tip-ball contact times, ball-ball contact
times, various coefficients of friction, and many other interesting things.
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