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Abstract

We present a method for booting a
PowerPC r© Linux r© kernel on an embedded
machine. To do this, we supply the kernel
with a compact �attened-tree representation
of the system's hardware based on the device
tree supplied by Open Firmware on IBM r©
servers and Apple r© Power Macintosh r© ma-
chines.
The �blob� representing the device tree can

be created using dtc� the Device Tree Com-
piler � that turns a simple text representa-
tion of the tree into the compact representa-
tion used by the kernel. The compiler can
produce either a binary �blob� or an assem-
bler �le ready to be built into a �rmware or
bootwrapper image.
This �attened-tree approach is now the

only supported method of booting a ppc64
kernel without Open Firmware, and we plan
to make it the only supported method for all
powerpc kernels in the future.

1 Introduction

1.1 OF and the device tree

Historically, �everyday� PowerPC machines have
booted with the help of Open Firmware (OF),
a �rmware environment de�ned by IEEE1275 [4].
Among other boot-time services, OF maintains a
device tree that describes all of the system's hard-
ware devices and how they're connected. During
boot, before taking control of memory manage-
ment, the Linux kernel uses OF calls to scan the
device tree and transfer it to an internal represen-
tation that is used at run time to look up various
device information.

The device tree consists of nodes representing
devices or buses1. Each node contains properties,
name�value pairs that give information about the
device. The values are arbitrary byte strings, and
for some properties, they contain tables or other
structured information.

1.2 The bad old days

Embedded systems, by contrast, usually have a
minimal �rmware that might supply a few vital
system parameters (size of RAM and the like),
but nothing as detailed or complete as the OF de-
vice tree. This has meant that the various 32-bit
PowerPC embedded ports have required a variety of
hacks spread across the kernel to deal with the lack
of device tree. These vary from specialised boot
wrappers to parse parameters (which are at least
reasonably localised) to CONFIG-dependent hacks
in drivers to override normal probe logic with hard-
coded addresses for a particular board. As well as
being ugly of itself, such CONFIG-dependent hacks
make it hard to build a single kernel image that
supports multiple embedded machines.
Until relatively recently, the only 64-bit

PowerPC machines without OF were legacy (pre-
POWER5 r©) iSeries r© machines. iSeries machines
often only have virtual IO devices, which makes it
quite simple to work around the lack of a device
tree. Even so, the lack means the iSeries boot se-
quence must be quite di�erent from the pSeries or
Macintosh, which is not ideal.
The device tree also presents a problem for im-

plementing kexec(). When the kernel boots, it
takes over full control of the system from OF, even
re-using OF's memory. So, when kexec() comes

1Well, mostly. There are a few special exceptions.
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to boot another kernel, OF is no longer around for
the second kernel to query.

2 The Flattened Tree

In May 2005 Ben Herrenschmidt implemented a
new approach to handling the device tree that ad-
dresses all these problems. When booting on OF
systems, the �rst thing the kernel runs is a small
piece of code in prom_init.c, which executes in
the context of OF. This code walks the device tree
using OF calls, and transcribes it into a compact,
�attened format. The resulting device tree �blob�
is then passed to the kernel proper, which eventu-
ally un�attens the tree into its runtime form. This
blob is the only data communicated between the
prom_init.c bootstrap and the rest of the kernel.
When OF isn't available, either because the ma-

chine doesn't have it at all or because kexec() has
been used, the kernel instead starts directly from
the entry point taking a �attened device tree. The
device tree blob must be passed in from outside,
rather than generated by part of the kernel from
OF. For kexec(), the userland kexec tools build
the blob from the runtime device tree before invok-
ing the new kernel. For embedded systems the blob
can come either from the embedded bootloader, or
from a specialised version of the zImage wrapper
for the system in question.

2.1 Properties of the �attened tree

The �attened tree format should be easy to handle,
both for the kernel that parses it and the bootloader
that generates it. In particular, the following prop-
erties are desirable:

• relocatable: the bootloader or kernel should be
able to move the blob around as a whole, with-
out needing to parse or adjust its internals. In
practice that means we must not use pointers
within the blob.

• insert and delete: sometimes the bootloader
might want to make tweaks to the �attened
tree, such as deleting or inserting a node (or
whole subtree). It should be possible to do this
without having to e�ectively regenerate the
whole �attened tree. In practice this means
limiting the use of internal o�sets in the blob

that need recalculation if a section is inserted
or removed with memmove().

• compact : embedded systems are frequently
short of resources, particularly RAM and �ash
memory space. Thus, the tree representation
should be kept as small as conveniently possi-
ble.

2.2 Format of the device tree blob

O�set Contents
0x00 0xd00dfeed magic number
0x04 totalsize
0x08 o�_struct
0x0C o�_strs
0x10 o�_rsvmap
0x14 version
0x18 last_comp_ver
0x1C boot_cpu_id >v2 only
0x20 size_strs >v3 only

...
...

o�_rsvmap address0 memory reserve
+ 0x04 ... table
+ 0x08 len0
+ 0x0C ...

...
...

0x00000000- end marker
00000000

0x00000000-
00000000

...
...

o�_strs 'n' 'a' 'm' 'e' strings block
+ 0x04 0 'm' 'o' 'd'
+ 0x08 'e' 'l' 0 ...

...
...

+ size_strs
...

...
o�_struct OF_DT_BEGIN_NODE structure block

+ 0x04 '/' 0 0 0 root node
+ 0x08 OF_DT_PROP
+ 0x0C 0x00000005 �model�
+ 0x10 0x00000008
+ 0x14 'M' 'y' 'B' 'o'
+ 0x18 'a' 'r' 'd' 0

...
...

OF_DT_END_NODE
OF_DT_END

...
...

totalsize

Figure 1: Device tree blob layout
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The format for the blob we devised, was �rst de-
scribed on the linuxppc64-dev mailing list in [2].
The format has since evolved through various revi-
sions, and the current version is included as part of
the dtc (see �3) git tree, [1].

Figure 1 shows the layout of the blob of data
containing the device tree. It has three sections of
variable size: the memory reserve table, the struc-
ture block and the strings block. A small header
gives the blob's size and version and the locations
of the three sections, plus a handful of vital param-
eters used during early boot.

The memory reserve map section gives a list of
regions of memory that the kernel must not use2.
The list is represented as a simple array of (address,
size) pairs of 64 bit values, terminated by a zero
size entry. The strings block is similarly simple,
consisting of a number of null-terminated strings
appended together, which are referenced from the
structure block as described below.

The structure block contains the device tree
proper. Each node is introduced with a 32-bit
OF_DT_BEGIN_NODE tag, followed by the node's
name as a null-terminated string, padded to a 32-
bit boundary. Then follows all of the properties
of the node, each introduced with a OF_DT_PROP

tag, then all of the node's subnodes, each in-
troduced with their own OF_DT_BEGIN_NODE tag.
The node ends with an OF_DT_END_NODE tag,
and after the OF_DT_END_NODE for the root node
is an OF_DT_END tag, indicating the end of the
whole tree3. The structure block starts with the
OF_DT_BEGIN_NODE introducing the description of
the root node (named /).

Each property, after the OF_DT_PROP , has a 32-
bit value giving an o�set from the beginning of the
strings block at which the property name is stored.
Because it's common for many nodes to have prop-
erties with the same name, this approach can sub-
stantially reduce the total size of the blob. The
name o�set is followed by the length of the prop-
erty value (as a 32-bit value) and then the data
itself padded to a 32-bit boundary.

2Usually such ranges contain some data structure ini-
tialised by the �rmware that must be preserved by the ker-
nel.

3This is redundant, but included for ease of parsing.

2.3 Contents of the tree

Having seen how to represent the device tree struc-
ture as a �attened blob, what actually goes into the
tree? The short answer is �the same as an OF tree�.
On OF systems, the �attened tree is transcribed di-
rectly from the OF device tree, so for simplicity we
also use OF conventions for the tree on other sys-
tems.
In many cases a �at tree can be simpler than a

typical OF provided device tree. The �attened tree
need only provide those nodes and properties that
the kernel actually requires; the �attened tree gen-
erally need not include devices that the kernel can
probe itself. For example, an OF device tree would
normally include nodes for each PCI device on the
system. A �attened tree need only include nodes
for the PCI host bridges; the kernel will scan the
buses thus described to �nd the subsidiary devices.
The device tree can include nodes for devices where
the kernel needs extra information, though: for ex-
ample, for ISA devices on a subsidiary PCI/ISA
bridge, or for devices with unusual interrupt rout-
ing.
Where they exist, we follow the IEEE1275 bind-

ings that specify how to describe various buses in
the device tree (for example, [5] describe how to
represent PCI devices). The standard has not been
updated for a long time, however, and lacks bind-
ings for many modern buses and devices. In partic-
ular, embedded speci�c devices such as the various
System-on-Chip buses are not covered. We intend
to create new bindings for such buses, in keeping
with the general conventions of IEEE1275 (a sim-
ple such binding for a System-on-Chip bus was in-
cluded in [3] a revision of [2]).
One complication arises for representing �phan-

dles� in the �attened tree. In OF, each node in the
tree has an associated phandle, a 32-bit integer that
uniquely identi�es the node4. This handle is used
by the various OF calls to query and traverse the
tree. Sometimes phandles are also used within the
tree to refer to other nodes in the tree. For exam-
ple, devices that produce interrupts generally have
an interrupt-parent property giving the phandle
of the interrupt controller that handles interrupts
from this device. Parsing these and other interrupt
related properties allows the kernel to build a com-

4In practice usually implemented as a pointer or o�set
within OF memory.
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plete representation of the system's interrupt tree,
which can be quite di�erent from the tree of bus
connections.
In the �attened tree, a node's phandle is rep-

resented by a special linux,phandle property.
When the kernel generates a �attened tree from
OF, it adds a linux,phandle property to each
node, containing the phandle retrieved from OF.
When the tree is generated without OF, however,
only nodes that are actually referred to by phandle
need to have this property.
Another complication arises because nodes in an

OF tree have two names. First they have the �unit
name�, which is how the node is referred to in an OF
path. The unit name generally consists of a device
type followed by an @ followed by a unit address.
For example /memory@0 is the full path of a mem-
ory node at address 0, /ht@0,f2000000/pci@1 is
the path of a PCI bus node, which is under a

HyperTransport
TM

bus node. The form of the unit
address is bus dependent, but is generally derived
from the node's reg property. In addition, nodes
have a property, name, whose value is usually equal
to the �rst path of the unit name. For example,
the nodes in the previous example would have name
properties equal to memory and pci, respectively.
To save space in the blob, the current version of the
�attened tree format only requires the unit names
to be present. When the kernel un�attens the tree,
it automatically generates a name property from the
node's path name.

3 The Device Tree Compiler

As we've seen, the �attened device tree format pro-
vides a convenient way of communicating device
tree information to the kernel. It's simple for the
kernel to parse, and simple for bootloaders to ma-
nipulate. On OF systems, it's easy to generate the
�attened tree by walking the OF maintained tree.
However, for embedded systems, the �attened tree
must be generated from scratch.
Embedded bootloaders are generally built for a

particular board. So, it's usually possible to build
the device tree blob at compile time and include it
in the bootloader image. For minor revisions of the
board, the bootloader can contain code to make the
necessary tweaks to the tree before passing it to the
booted kernel.

1 /memreserve/ 0x20000000 -0 x21FFFFFF;
2
3 / {
4 model = "MyBoard ";
5 compatible = "MyBoardFamily ";
6 #address -cells = <2>;
7 #size -cells = <2>;
8
9 cpus {
10 #address -cells = <1>;
11 #size -cells = <0>;
12 PowerPC ,970@0 {
13 device_type = "cpu";
14 reg = <0>;
15 clock -frequency = <5f5e1000 >;
16 timebase -frequency = <1FCA055 >;
17 linux ,boot -cpu;
18 i-cache -size = <10000>;
19 d-cache -size = <8000>;
20 };
21 };
22
23 memory@0 {
24 device_type = "memory ";
25 memreg: reg = <00000000 00000000
26 00000000 20000000 >;
27 };
28
29 mpic@0x3fffdd08400 {
30 /* Interrupt controller */
31 /* ... */
32 };
33
34 pci@40000000000000 {
35 /* PCI host bridge */
36 /* ... */
37 };
38
39 chosen {
40 bootargs = "root=/dev/sda2";
41 linux ,platform = <00000600 >;
42 interrupt -controller =
43 < &/ mpic@0x3fffdd08400 >;
44 };
45 };

Figure 2: Example dtc source

The device trees for embedded boards are usu-
ally quite simple, and it's possible to hand con-
struct the necessary blob by hand, but doing so is
tedious. The �device tree compiler�, dtc5, is de-
signed to make creating device tree blobs easier by
converting a text representation of the tree into the
necessary blob.

5dtc can be obtained from [1].
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3.1 Input and output formats

As well as the normal mode of compiling a device
tree blob from text source, dtc can convert a device
tree between a number of representations. It can
take its input in one of three di�erent formats:

• source, the normal case. The device tree is
described in a text form, described in �3.2.

• blob (dtb), the �attened tree format described
in �2.2. This mode is useful for checking a pre-
existing device tree blob.

• �lesystem (fs), input is a directory tree in the
layout of /proc/device-tree (roughly, a di-
rectory for each node in the device tree, a �le
for each property). This is useful for building a
blob for the device tree in use by the currently
running kernel.

In addition, dtc can output the tree in one of
three di�erent formats:

• blob (dtb), as in �2.2. The most straightfor-
ward use of dtc is to compile from �source� to
�blob� format.

• source (dts), as in �3.2. If used with blob in-
put, this allows dtc to act as a �decompiler�.

• assembler source (asm). dtc can produce an
assembler �le, which will assemble into a .o �le
containing the device tree blob, with symbols
giving the beginning of the blob and its various
subsections. This can then be linked directly
into a bootloader or �rmware image.

For maximum applicability, dtc can both read
and write any of the existing revisions of the blob
format. When reading, dtc takes the version from
the blob header, and when writing it takes a com-
mand line option specifying the desired version. It
automatically makes any necessary adjustments to
the tree that are necessary for the speci�ed version.
For example, formats before 0x10 require each node
to have an explicit name property. When dtc cre-
ates such a blob, it will automatically generate name
properties from the unit names.

3.2 Source format

The �source� format for dtc is a text descrip-
tion of the device tree in a vaguely C-like form.

Figure 2 shows an example. The �le starts
with /memreserve/ directives, which gives address
ranges to add to the output blob's memory reserve
table, then the device tree proper is described.
Nodes of the tree are introduced with the node

name, followed by a { ... }; block containing the
node's properties and subnodes. Properties are
given as just name = value;. The property values
can be given in any of three forms:

• string (for example, "MyBoard"). The prop-
erty value is the given string, including termi-
nating NULL. C-style escapes (\t, \n, \0 and
so forth) are allowed.

• cells (for example, <0 8000 f0000000>). The
property value is made up of a list of 32-bit
�cells�, each given as a hex value.

• bytestring (for example, [1234abcdef]). The
property value is given as a hex bytestring.

Cell properties can also contain references. In-
stead of a hex number, the source can give an am-
persand (&) followed by the full path to some node
in the tree. For example, in Figure 2, the /chosen
node has an interrupt-controller property re-
ferring to the interrupt controller described by the
node /mpic@0x3fffdd08400. In the output tree,
the value of the referenced node's phandle is in-
cluded in the property. If that node doesn't have
an explicit phandle property, dtc will automati-
cally create a unique phandle for it. This approach
makes it easy to create interrupt trees without hav-
ing to explicitly assign and remember phandles for
the various interrupt controller nodes.
The dtc source can also include �labels�, which

are placed on a particular node or property. For
example, Figure 2 has a label �memreg� on the reg
property of the node /memory@0. When using as-
sembler output, corresponding labels in the output
are generated, which will assemble into symbols ad-
dressing the part of the blob with the node or prop-
erty in question. This is useful for the common case
where an embedded board has an essentially �xed
device tree with a few variable properties, such as
the size of memory. The bootloader for such a
board can have a device tree linked in, including
a symbol referring to the right place in the blob to
update the parameter with the correct value deter-
mined at runtime.
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3.3 Tree checking

Between reading in the device tree and writing it
out in the new format, dtc performs a number of
checks on the tree:

• syntactic structure: dtc checks that node and
property names contain only allowed charac-
ters and meet length restrictions. It checks
that a node does not have multiple properties
or subnodes with the same name.

• semantic structure: In some cases, dtc checks
that properties whose contents are de�ned by
convention have appropriate values. For exam-
ple, it checks that reg properties have a length
that makes sense given the address forms speci-
�ed by the #address-cells and #size-cells

properties. It checks that properties such as
interrupt-parent contain a valid phandle.

• Linux requirements: dtc checks that the de-
vice tree contains those nodes and properties
that are required by the Linux kernel to boot
correctly.

These checks are useful to catch simple problems
with the device tree, rather than having to debug
the results on an embedded kernel. With the blob
input mode, it can also be used for diagnosing prob-
lems with an existing blob.

4 Future Work

4.1 Board ports

The �attened device tree has always been the only
supported way to boot a ppc64 kernel on an embed-
ded system. With the merge of ppc32 and ppc64

code it has also become the only supported way to
boot any merged powerpc kernel, 32-bit or 64-bit.
In fact, the old ppc architecture exists mainly just
to support the old ppc32 embedded ports that have
not been migrated to the �attened device tree ap-
proach. We plan to remove the ppc architecture
eventually, which will mean porting all the various
embedded boards to use the �attened device tree.

4.2 dtc features

While it is already quite usable, there are a number
of extra features that dtc could include to make

creating device trees more convenient:

• better tree checking : Although dtc already
performs a number of checks on the device tree,
they are rather haphazard. In many cases dtc
will give up after detecting a minor error early
and won't pick up more interesting errors later
on. There is a -f parameter that forces dtc to
generate an output tree even if there are er-
rors. At present, this needs to be used more
often than one might hope, because dtc is bad
at deciding which errors should really be fatal,
and which rate mere warnings.

• binary include: Occasionally, it is useful for
the device tree to incorporate as a property
a block of binary data for some board-speci�c
purpose. For example, many of Apple's device
trees incorporate bytecode drivers for certain
platform devices. dtc's source format ought to
allow this by letting a property's value be read
directly from a binary �le.

• macros: it might be useful for dtc to imple-
ment some sort of macros so that a tree con-
taining a number of similar devices (for exam-
ple, multiple identical ethernet controllers or
PCI buses) can be written more quickly. At
present, this can be accomplished in part by
running the source �le through CPP before
compiling with dtc. It's not clear whether �na-
tive� support for macros would be more useful.
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